
Doctoral Dissertation

Doctoral Program in Computer Science, Control and

GeoInformation

Towards resilient and effective
Network Services

Marco Faltelli

Supervisors
Prof. Francesco Quaglia
Prof. Giuseppe Bianchi

Doctoral Program Coordinator
Prof. Francesco Quaglia

Academic year 2021/22
(XXXV PhD cycle)

Abstract

Abstract

In recent years, high-performance polling frameworks like DPDK have been proposed

to enable fast packet processing. Despite the remarkable improvements, such frame-

works still provide some questions to be addressed. A first well-known drawback is

the cost of precious CPU resources dedicated to continuously poll the NICs, coupled

with the lack of resilience in resource-sharing contexts like public clouds. Moreover, as

NICs are about to reach the Terabit Ethernet, questions about the multi-queue scaling

must be asked, as well as whether a better architecture can be designed in order to

deliver predictable latency to applications.

In this scenario, this Dissertation aims to tackle these limitations by exploiting tech-

niques like multi-core low-overhead coordination, parallel computation, queuing theory,

and dynamic scaling. More specifically, two contributions are presented.

Firstly, this Dissertation proposes an approach, descriptively called Metronome, which

has the dual goals of providing CPU utilization proportional to the load and allowing

flexible sharing of CPU resources between I/O tasks and applications. Metronome

replaces the continuous polling with an intermittent sleep&wake mode and revolves

around a new multi-threaded operation, which improves service continuity. Since the

proposed operation trades CPU usage with buffering delay, we propose an analytical

model devised to adapt the sleep&wake parameters to the actual traffic load dynami-

cally, meanwhile providing an average target latency. Our experimental results show

a significant reduction in CPU cycles, improvements in power usage, and robustness

to CPU sharing even when challenged with CPU-intensive applications.

Secondly, an algorithm for a non-blocking, parallel driver is presented. By exploiting

read-modify-write instructions, the algorithm enables a new scale-up policy for net-

I

Abstract

work stacks; the novelty behind this is not only in the software coordination among

the threads but also in a transparency mechanism that allows the algorithm to run with

unmodified NICs. This policy permits new possibilities for scaling in hundred-gigabit

NICs and has the inherent benefit of improving both mean and tail latency.

II

Contents

1 Introduction 2

1.1 Context . 2

1.1.1 Data Centers . 2

1.1.2 The need for CPU cycles . 3

1.1.3 The network perspective . 5

1.2 Problem statement . 7

1.3 Objective . 8

1.3.1 Scope . 9

1.4 Dissertation outline . 10

1.5 Published Works . 11

1.6 Conferences Attended . 12

1.7 Rewards and Internships . 12

2 Background 13

2.1 NIC-CPU interaction . 13

2.1.1 Network Drivers . 14

2.2 Network stacks and frameworks . 16

2.2.1 Queue modeling . 17

2.2.2 DPDK . 19

CONTENTS III

CONTENTS

2.3 Non-blocking algorithms . 19

2.4 Where this dissertation fits . 20

2.4.1 Metronome . 20

2.4.2 Non-blocking, single-queue driver 20

I Metronome 22

3 Metronome architecture 25

3.1 Fine-grained Thread Sleep Service . 25

3.2 Actual Thread Operations . 27

3.3 Skeleton code . 30

4 Metronome Adaptive tuning 33

4.1 Metronome Multi-Threading Strategy 34

4.2 Metronome Analysis . 35

4.2.1 Background . 35

4.2.2 Vacation Period statistics at high load 37

4.2.3 Vacation period statistics at low load 39

4.2.4 Experimental verification of the decorrelation assumption . . . 39

4.3 Adaptation policy under general load conditions 40

4.4 Metronome Adaptation and Tradeoffs 42

4.5 The multiqueue case . 44

5 Experimental results 46

5.1 Parameters Tuning . 47

5.1.1 Vacation period (V̄) . 47

CONTENTS IV

CONTENTS

5.1.2 Number of threads (M) . 48

5.1.3 Long sleep time (TL) . 50

5.2 Tuning for latency . 50

5.3 Adaptation . 51

5.4 Comparing Metronome and DPDK 52

5.5 Comparing Metronome and XDP . 55

5.6 Impact . 57

5.7 Vacation period interference . 59

5.8 Going multiqueue . 60

5.8.1 Tuning the number of queues 61

5.8.2 Power governors matter . 61

5.8.3 Tuning the number of threads 62

5.8.4 Scaling to the actual traffic 64

5.8.5 Unbalanced traffic . 64

5.8.6 Thread-to-queue binding policy 65

5.8.7 Many-queues scaling . 66

5.9 Tested applications . 66

II Non-blocking, single-queue driver 69

6 Architecture 73

6.1 Motivation . 73

6.1.1 Simulation results . 73

6.2 Core Concepts . 75

6.3 Challenges and Constraints . 76

CONTENTS V

CONTENTS

6.4 The Algorithm . 77

6.4.1 Handling thread-level parallelism 77

6.4.2 Handling transparency to the NIC 78

6.5 Implementation . 79

6.5.1 Corner cases . 81

6.5.2 Practical details . 83

7 Experimental results 85

7.1 Scalability tests . 86

7.2 Latency . 87

7.2.1 Mean Latency . 87

7.2.2 Tail Latency . 89

7.3 UDP reordering . 89

7.4 TCP . 90

III Related Work 95

8 Related Work 96

8.1 Optimized networking software . 96

8.1.1 Latency . 96

8.1.2 Cache performances . 98

8.1.3 Power consumption . 98

8.1.4 Other optimizations . 99

8.2 Network drivers . 100

8.2.1 Modern optimizations . 100

8.3 Non-blocking algorithms . 101

CONTENTS VI

CONTENTS

IV Concluding Remarks 102

9 Conclusions 103

Acknowledgements 106

Bibliography 109

CONTENTS VII

“ci si fa grandi resistendo ad una sventura ed espiando le proprie colpe,
e si diventa invece piccoli gonfiandosi con le menzogne
e facendo risorgere i cattivi istinti per il fatto di vincere”

Giuseppe Prezzolini

Chapter 1

Introduction

1.1 Context

1.1.1 Data Centers

Data Centers are one of the most challenging contexts in modern Computer Engi-

neering: many users execute their tasks on the same servers, and each of them has

the illusion of being constantly run. In practice, it is known that these users share

a various number of resources: the CPUs for executing tasks, as well as caches and

RAM for storing relevant data, the PCIe transactions to send and get data from the

NIC, and the available bandwidth in the network.

Sharing resources in cloud contexts can cause interference among applications running

on the same physical or virtual machines. The reason behind this is that the cloud

infrastructure often employs multi-tenancy, where multiple applications from different

users are hosted on the same set of resources. When resources are shared, there is a

possibility that one application may consume more resources than it needs, causing

other applications to suffer from resource starvation. Similarly, an application that

consumes excessive CPU cycles may cause other applications to experience delays or

timeouts; this is especially harmful in the case of latency-sensitive applications.

Furthermore, applications may use inefficiently these resources for a number of rea-

Chap. 1 Introduction 2

§1.1 Context

sons: at the code level, poor optimization, lack of parallelism, or outdated software

could be a bottleneck. Inappropriate resource allocation, lack of workload balancing,

or bursty workloads can limit performance too.

From the provider’s perspective, it becomes critical to make a careful, flexible, and

smart usage of these resources. In fact, the explicit goal of multi-tenancy is to pack

more and more applications into the same server to reach peak capacity and maximize

gains[1]. Indeed, Google states that even minor improvements in resource utilization

can save millions of dollars [2].

Takeaway 1: Cloud providers strive to make the maximum out of their hardware,

so intelligent and careful use of shared resources (CPU, RAM, network bandwidth)

must be set up.

1.1.2 The need for CPU cycles

For decades, application improvement has intensely relied on two different laws regard-

ing computer architecture and chip performance: Moore’s Law and Dennard Scaling.

• Moore’s Law is a prediction made by Intel co-founder Gordon Moore in 1965

that the number of transistors on a microchip would double approximately every

18 to 24 months, leading to a corresponding increase in the processing power of

computers.

• Dennard Scaling is a term used to describe the phenomenon of transistors

becoming smaller and more densely packed on a microchip while consuming less

power simultaneously. Consequently, the power consumption per mm2 would

remain roughly constant. Robert Dennard first observed this phenomenon in

the 1970s.

Chap. 1 Introduction 3

§1.1 Context

These two predictions have held true for several decades and have been a driving force

behind the rapid advancement of technology. However, the end of Moore’s Law and

Dennard Scaling seems to be approaching [3].

One of the main reasons for this is the physical limitations of transistors. As tran-

sistors continue to shrink in size, they are approaching the limit of what is possible

with current technology. This is due to the fact that as the transistors get smaller,

their electrical properties begin to change, resulting in increased leakage current and

higher power consumption. Additionally, as the transistors get smaller, they become

more susceptible to thermal effects, leading to increased power consumption.

Another factor is the increasing cost of designing and producing smaller transistors.

As the size of transistors decreases, it becomes increasingly expensive to design and

manufacture them.CPUs are also known for being the most greedy component in

terms of power consumption [4]: Barroso and Hölzle [5] show that in a Google data-

center, CPUs account for 33% of the peak power usage of a server.

Accelerators like GPUs, TPUs, or programmable hardware like FPGAs have been

proposed to offload computation from the CPUs and save cycles. However, there is

no one-size-fits-all accelerator, as some workloads perform better on CPUs or either

cannot be offloaded because of the lack of primitives. Moreover, these devices are still

conceived as peripherals, while the CPU keeps its role as the primary, central device

for computation.

Takeaway 2: CPU cycles are precious and we should make an effort to

efficiently use these cycles, as while CPU improvements stall, applications ask for

more computing power than ever. At the same time, it is also crucial to implement

power-saving policies to make data centers more sustainable.

Chap. 1 Introduction 4

§1.1 Context

1.1.3 The network perspective

Data center networks are the backbone of modern computing, connecting servers,

storage devices, and other networked equipment in order to provide fast and reliable

communication between devices. These networks play a critical role in the functioning

of data centers, which organizations of all sizes use to host their applications and data.

Rate trends

One of the critical challenges in designing a data center network is dealing with a

large amount of data that needs to be moved. With the increasing amount of data

being generated and consumed by modern applications, data center networks need

to be able to handle high-bandwidth traffic while maintaining low latency. This is

typically achieved by using high-speed networking technologies: in the last years,

new technologies have emerged, like Infiniband and RDMA, and there has been a

massive improvement in network speeds. In fact, Network Interface Cards (NICs)

have now reached 400Gbps [6], and higher speeds like 800Gbps, and 1.6Tbps (the

so-called Terabit Ethernet) are expected to become an IEEE standard between 2023

and 2025 [7]. Considering that in 2012 the standard NICs could support 10-40Gbps

rates [8], this implies NICs have had a 10-40x improvement in the last 10 years, and

the consequence is increased pressure on CPUs, as they have to process more and

more packets in the same period of time.

Software trends

Because of the motivations explained in Sections 1.1.2 and 1.1.3, it is clear that com-

puter scientists currently find themselves in the following situation: while NICs are

rapidly increasing their throughput, the CPUs in charge of processing this traffic are

Chap. 1 Introduction 5

§1.1 Context

at a stagnation point and struggle to process increasing traffic rates. One of the main

solutions was to re-architect the way packets are processed in software. In fact, tradi-

tional in-kernel processing is anything but tailored for modern requirements because

of the complex network stack that packets have to cross, as well as the system calls

and context switches.

For these reasons, Kernel bypass has emerged: the name refers to a technique used

in computer systems to bypass the kernel, or the central part of an operating system

that manages system resources and controls interactions between hardware and soft-

ware. Bypassing the kernel can be done for a variety of reasons, such as to improve

performance, reduce latency, or to access low-level hardware features that are not

directly exposed by the kernel. There are a few different methods to achieve kernel

bypass, including special kernel modules, userspace networking libraries, or direct ac-

cess to network interfaces. The main framework currently used is the Data Plane

Development Kit (DPDK) [9].

Application requirements

Data Center applications rely heavily on distributed architectures and microservices,

as different components interact with each other exchanging data through the net-

work. A common way to properly handle a user’s request is to split it into different

sub-requests, distribute them onto a set of leaf nodes, and subsequently merge the

responses. For the application to be responsive, it is crucial that these sub-requests

are completed in a short period of time. As requests are heavily parallelized, the

response time is bounded by the slowest of the sub-request’s response time; therefore,

it is paramount to build systems that can achieve not only a very low latency but,

most of all, a predictable one [10]. Latency predictability in data centers has been

Chap. 1 Introduction 6

§1.2 Problem statement

widely studied [10, 11], and there are many possible sources of tail latency, like re-

source sharing, queuing, and power management. In more detail, the literature shows

that we have two sides of the same coin. On one side, we have to deal with latency

variability while dealing with complex systems such as modern calculators and cannot

get entirely rid of it. On the other one, it is crucial to design architectures explicitly

built to mitigate it as much as possible.

Takeaway 3: There is a growing need for high-performing, kernel-bypass frame-

works which must provide (1) high throughput and (2) low, predictable latency.

1.2 Problem statement

It is clear to the reader that this is quite a tangled context, where different software

and hardware trends have brought different approaches and technologies that need

to be melted together. This causes different problems, which are the focus of this

dissertation:

1. 100% CPU consumption of the cores assigned to kernel-bypass frameworks

like DPDK, as they need to poll the NICs to check for incoming packets con-

stantly. This counteracts Takeaways 1 and 2 and is exacerbated by the fact that

while data center networks are designed to handle peak load, they are largely

underutilized: Microsoft reveals that 46-99% of their rack pairs exchange no

traffic at all [12]; at Facebook, the utilization of the 5% busiest links ranges

from 23% to 46% [13], and [14] shows that the percentage of utilization of core

network links (by far the most stressed ones) never exceeds 25%.

2. Lack of resilience in cloud contexts. Major cloud providers have enabled

Chap. 1 Introduction 7

§1.3 Objective

kernel-bypass software in their datacenters [15, 16]. Still, such frameworks are

designed to run in an isolated fashion, with exclusive access to any resource, and

therefore they do not seem suited for CPU-sharing contexts like public clouds.

3. Lack of scalability: as Golestani, Mirhosseini et al. showed in [17], current

frameworks lack scalability in terms of many queues and cores; in fact, poor

scaling is caused by the increased use of memory, which leads to increased

cache pressure and therefore, degradation in peak throughput and higher average

latency. This limitation will be more and more significant as we move towards

the Terabit Ethernet and beyond (see Section 1.1.3 and Takeaway 3), where a

highly efficient scaling to many cores is needed.

4. Lack of frameworks specifically designed to deliver low and predictable

latency: it is well known that scale-up architectures are the best for delivering

lower and tail-bounded latency (see Section 6.1). Still, such frameworks exploit

scale-out mechanisms to avoid synchronization overheads in sharing a single

receive queue [17]. This causes missing Takeaway 3.

1.3 Objective

The goal of this dissertation is the design and implementation of novel policies and

mechanisms in the context of high-performance networking, which can provide an

answer to the above-mentioned problems. More specifically, the author has focused

on the following approaches:

1. Adaptive polling mechanism to replace the static, 100% CPU consumption

approach with an adaptive one, where threads can go to sleep when there is no

traffic to be processed. An adaptive model fine-tunes this sleep period, choosing

Chap. 1 Introduction 8

§1.3 Objective

how much each thread needs to sleep based on the incoming traffic. This permits

freeing CPU cycles to other applications while avoiding too big sleep periods

and, therefore, packet loss. This solves Problem 1 and, as a side effect, has a

positive impact on reducing energy consumption.

2. Multi-threaded architecture with low-level coordination among threads to

enable enhanced robustness in CPU-sharing contexts. Different threads can

share a receive queue and race for exclusive access, and this approach brings

increased resilience, thus solving Problem 2.

3. Scale-up network stacks instead of the current scale-out policies. More

threads can process the same receive queue in parallel without any delay or

waiting period. The reason behind moving to a scale-up network stack is that

it brings benefits, especially in terms of low and tail-bounded latency. A first

consequence of this approach is that one queue is enough to process packets com-

ing at very high gigabit rates, thus reducing the number of queues needed and

overcoming Problem 3. To the best of the author’s knowledge, this is the first

networking framework explicitly designed at the architecture level to provide

low and tail-bounded latency, solving Problem 4.

1.3.1 Scope

This dissertation focuses explicitly on the DPDK framework for a number of reasons

outlined here:

• Ease of writing code in a user-space context and testing it straight away. The

opposite solution of writing in-kernel code would have required many limitations,

like a limited range of action and complex deploying strategies and debugging.

Chap. 1 Introduction 9

§1.4 Dissertation outline

• DPDK delivers the best performances compared to other solutions [18].

• it is a well-documented framework and constantly maintained.

• it is widely used by both industry and academia.

The author wants to underline that many of the contributions proposed in this

dissertation are not restricted to the DPDK community. In fact, concepts like con-

currency, adaptive models, and queuing theory can be put in place also in other

solutions, like the Linux kernel or RDMA. Implementing similar solutions in such

contexts would likely be more complex: as stated before, the main challenge for the

Linux kernel would be testing and deploying the code in kernel space, as this may

cause stability issues or system crashes; also applicability to an interrupt-based so-

lution should be kept in consideration. For RDMA, the limited documentation and

restricted knowledge from the community is the main limitation at the moment. It is

also necessary to underline that Emmerich et al. paved the way for part of this dis-

sertation by comprehensively explaining how DPDK-style drivers work [19]. The lack

of similar work applied to the Linux kernel or RDMA drivers is definitely a limitation

at the moment. The author hopes that this dissertation might be an inspirational

starting point for some readers toward this goal.

1.4 Dissertation outline

This dissertation is organized with the following outline:

• Part I presents Metronome, an approach devised to replace the static, fixed

100% CPU consumption of polling frameworks with an adaptive sleep&wake

approach, as well as increased robustness. Metronome meets Objectives 1 and

2 in Section 1.3.

Chap. 1 Introduction 10

§1.5 Published Works

• Part II presents a scale-up mechanism for network stacks, as opposed to the cur-

rent scale-out policy. This approach permits vertical scaling by binding more

CPU cores to the same receive queue, positively impacting mean and tail la-

tency because of its inherent work-conserving characteristic. This work meets

Objective 3 in Section 1.3.

1.5 Published Works

During my PhD, I’ve been the first author and co-author of the following publications

and technical reports:

• Marco Faltelli, Giacomo Belocchi, Francesco Quaglia, Salvatore Pontarelli, and

Giuseppe Bianchi. “Metronome: Adaptive and Precise Intermittent Packet

Retrieval in DPDK”. in: Proceedings of the 16th International Conference on

Emerging Networking EXperiments and Technologies. CoNEXT ’20. Barcelona,

Spain: ACM, 2020, pp. 406–420. doi: 10.1145/3386367.3432730

• Marco Faltelli, Giacomo Belocchi, Francesco Quaglia, Salvatore Pontarelli, and

Giuseppe Bianchi. “Metronome: Adaptive and Precise Intermittent Packet Re-

trieval in DPDK”. in: IEEE/ACM Transactions on Networking (2022), pp. 1–

15. doi: 10.1109/TNET.2022.3208799

• Marco Faltelli, Giacomo Belocchi, Giuseppe Bianchi, and Francesco Quaglia. A

non-blocking, parallel driver for low and predictable latency. Tech. rep. Con-

sorzio Nazionale Interuniversitario per le Telecomunicazioni - CNIT, 2022

• Valerio Bruschi, Marco Faltelli, Angelo Tulumello, Salvatore Pontarelli, Francesco

Quaglia, and Giuseppe Bianchi. “Offloading Online MapReduce tasks with

Chap. 1 Introduction 11

https://doi.org/10.1145/3386367.3432730
https://doi.org/10.1109/TNET.2022.3208799

§1.6 Conferences Attended

Stateful Programmable Data Planes”. In: IEEE NETPROC 2020, pp. 17–22.

doi: 10.1109/ICIN48450.2020.9059417

• Giuseppe Bianchi, Marco Faltelli, and Valerio Bruschi. “Back to the Future:

Towards Hardware ”Netputing” Architectures”. In: IEEE MedComNet 2020,

pp. 1–4. doi: 10.1109/MedComNet49392.2020.9191475

Furthermore, the “A non-blocking, parallel driver for low and predictable latency”

paper is about to be submitted for revision to an ACM conference.

1.6 Conferences Attended

In these three years, I’ve attended the following conferences:

• ACM CoNEXT 2020 (remote), where I presented a first version of Metronome.

• IEEE ICIN 2020 (Paris, France), where I presented the MapReduce paper at

the NETPROC workshop.

• USENIX OSDI 2021 (remote) as an attendee.

• ACM HotNets 2021 (remote) as an attendee.

• ACM CoNEXT 2022 (Rome, Italy) as an attendee.

1.7 Rewards and Internships

This dissertation is supported by a Microsoft PhD Fellowship award. As part of

the fellowship, I had the opportunity to spend three months at Microsoft Research

Cambridge, UK, during Summer of 2022 for an internship. I’ve been part of project

Silica, targeting path optimization in the context of Cloud Infrastructure robotics.

The work was done under the supervision of Dr. Sergey Legtchenko.

Chap. 1 Introduction 12

https://doi.org/10.1109/ICIN48450.2020.9059417
https://doi.org/10.1109/MedComNet49392.2020.9191475

Chapter 2

Background

This chapter focuses on the most relevant concepts and technologies to this disserta-

tion. The author first presents the state of the art and then, in the last section of

the chapter, the main difference between these and the novel technologies presented

in this dissertation. This chapter partially includes figures and verbatim copies of the

text from the author’s papers.

2.1 NIC-CPU interaction

When dealing with how the NIC and the CPU communicate for handling packets

arrival, there are two possible ways of interaction:

• Interrupt-based solutions are based on the following schema: every time a

packet arrives, the NIC informs a CPU core of this event by sending an interrupt,

and consequentially the CPU core will retrieve the incoming packet. One of the

advantages of this approach is that CPU cores can be utilized for other tasks

when there is no incoming traffic, as the NIC is in charge of alerting them. This

is the approach used in modern operative systems.

• Polling-based solutions use the opposite approach: the CPU constantly checks

the shared memory area with the NIC for incoming packets without any warning

Chap. 2 Background 13

§2.1 NIC-CPU interaction

by external components. This approach has the great advantage of not paying

the fixed price of one interrupt per packet and therefore achieves the best la-

tency, but costs in terms of sacrificing one or more cores to this constant polling

operation. This approach is used in high-performance specific frameworks like

DPDK [9].

The recent advantages in NIC speeds and the stagnation of CPU performances be-

cause of the end of Moore’s law and Dennard Scaling have brought to evidence the

limitations of an interrupt-based approach. In fact, interrupt-based solutions suffer

from the latency brought by the system calls used to interact with the kernel-level

driver managing interrupts, packet copies to user space, and so on. Moreover, an

interrupt-based architecture operating at extreme interrupt arrival speed may cause

livelocks [25]. The Linux NAPI subsystem [26] aims at tackling these limitations by

providing a hybrid approach which tends to eliminate receive livelocks by dynamically

switching between polling and interrupt-based packet processing, depending on the

current traffic load; the polling period has a maximum budget, either in terms of time

or number of packets processed.

For the above-mentioned reasons, polling-based solutions have been widely adopted in

the last few years, with DPDK being the most known both in industry and academia.

2.1.1 Network Drivers

It is now essential to focus on network drivers in order to understand how the data

movement between NIC and CPU actually happens. A network driver is no more than

a piece of software built to move packets from the NIC memory to the main memory

and vice versa. The NIC and the CPU share one or more circular buffers also called

Receive (RX) or Transmit (TX) queues; incoming traffic can be split into multiple RX

Chap. 2 Background 14

§2.1 NIC-CPU interaction

Figure 2.1: A typical ring buffer

queues through filters or a hashing algorithm, while multiple TX queues are usually

merged on the NIC. These queues are composed of descriptors, each containing some

metadata about the packet and a pointer to a memory area where the packet is located.

An RX queue routine is roughly like this (the TX one is specular): the NIC controls

the area between the tail and the head of the queue [27] (see the grey boxes in Figure

2.1) and moves the head forward for every descriptor it fills. Complementarily, the

software controls the rest of the queue, swapping the NIC-populated descriptors with

empty ones and moving the tail. The software can understand whether a descriptor is

populated or not through the DD bit, which the NIC sets once it fills the descriptor.

Rx side flow

For the reader’s convenience, it is now shown a simplified routine of the receive side

of a network driver in Listing 2.1.1. First, the driver retrieves the relevant pieces

of information, namely the shared buffer with the NIC (line 6) and the descriptor

from where it left off at the last iteration (line 7). The driver checks how many of the

following descriptors were populated by hardware by reading their DD bit (line 10) up

to a fixed batch value (usually 32). Each of these descriptors is moved to a user-space

Chap. 2 Background 15

§2.2 Network stacks and frameworks

Listing 2.1: A standard receive function of a network driver

1 #define wrap_ring(index) (uint16_t) (index % RING_SIZE)

2

3 uint32_t ixgbe_rx_batch(struct device* dev , uint16_t queue_id , struct

pkt_buf* bufs []) {

4 //Get the queue struct for device dev and queue queue_id

5 struct ixgbe_rx_queue* queue = get_queue(dev , queue_id);

6 struct pkt_buf* buffer = queue ->buffer;

7 uint16_t rx_index = queue ->rx_index; // descriptor index we checked in

the last run of this function

8 uint16_t last_rx_index , i;

9 for (i = 0; i < BATCH_SIZE; i++) {

10 if (!(buffer[rx_index] && DD_BIT))

11 // Descriptor has not been filled by the NIC yet , exit the loop

12 break;

13 else {

14 //Copy the descriptor in the user space buffer

15 bufs[i] = buffer[rx_index];

16 // Replace the descriptor with a new one from the mempool

17 buffer[rx_index] = mempool_desc_get ();

18 last_rx_index = rx_index;

19 rx_index = wrap_ring(rx_index + 1);

20 }

21 }

22 //Free the processed descriptors back to the NIC

23 set_register(TAIL , dev , queue_id , last_rx_index)

24 }

buffer (line 15) and replaced with a new one taken from a pre-allocated memory pool

(line 17). The software can now update the tail, moving it by the number of packets

it has retrieved (line 23).

2.2 Network stacks and frameworks

The network stack is the portion of code in charge of implementing the different

network layers, as well as the different functionalities. Two different approaches can

be pursued:

• kernel-based network stacks are solutions where all traffic passes through the

kernel, which is in charge of implementing all the network functionalities and

exposing a set of primitives to the users in order to send/receive data. OS kernel

Chap. 2 Background 16

§2.2 Network stacks and frameworks

stacks are the standard solution for PCs and servers, as they already offer all

the functionalities users require. While these stacks are mostly interrupt-based,

some recent polling frameworks (e.g. netmap [28], PFQ [29] and PF RING ZC

[30]) rely on kernel drivers. XDP [31] has been recently proposed as a part of

the eBPF [32] project to process packets as soon as they get to the software

before any kernel allocation or routine is invoked.

• kernel-bypass stacks, like DPDK [9], tend to completely bypass the kernel,

thus interfacing directly with the underlying NIC(s). This solution has the ad-

vantage of removing all the kernel latencies and inefficiencies typical of a widely

generic solution to specialize for performances like throughput and latency.

2.2.1 Queue modeling

It is interesting to have a look at the different queuing models and how they are

exploited in current network stacks. We typically use Kendall’s notation, a widely

used system for representing queuing models, which provides a concise and standard-

ized way to describe the key characteristics of a queuing system. Kendall’s notation

consists of three parts:

A/B/c (2.2.1)

• Arrival Process (A): The arrival process describes how customers arrive at

the system. It is represented by a single letter that indicates the distribution of

inter-arrival times between consecutive customers.

• Service Time Distribution (B): The service time distribution represents the

time required to serve a single customer. Like the arrival process, it is denoted

by a single letter indicating the distribution of service times.

Chap. 2 Background 17

§2.2 Network stacks and frameworks

• Number of Servers (c): The number of servers in the system is represented

by a numerical value. It indicates how many customers can be served simulta-

neously. If this value is omitted, it is assumed to be 1 (single server). Examples

of server numbers are: 1 (single server), 2 (two servers), ∞ (infinite number of

servers, no waiting).

Typical Arrival Process (A) and Service Time (B) distributions are the following:

• M: Markovian (or Poisson) process (exponential inter-arrival times);

• D: Deterministic arrivals (fixed inter-arrival times);

• G: General distribution for inter-arrival times.

We will focus here on the case where the arrival process is Markovian (M) and the

service time general (G).

Modern network stacks are organized through a variation of the M/G/1 model,

namely the k × M/G/1 model. By considering the Rx driver queues as the model

queues, we have k queues operating independently with one servant (thread) each.

The incoming traffic rate λ is (theoretically) split equally among the queues, and

each thread processes the incoming traffic at rate µ. In this case, performances are

improved by adding more independent Rx queues at the driver level, as well as more

threads. This scaling option is the so-called scale-out method (see left side of Figure

2.2) and it is the model currently used in every modern network stack. A reason for

using this model is that modern NICs permit redirection of the packets belonging to

the same flow onto the same queue, therefore avoiding reordering possibilities.

Chap. 2 Background 18

§2.3 Non-blocking algorithms

Figure 2.2: Scale-out vs. Scale-up policy

2.2.2 DPDK

This dissertation focuses on the DPDK (Data Plane Development Kit) framework

for the reasons outlined in Section 1.3.1. It is a kernel-bypass framework explicitly

designed to optimize network functions by enabling high-performance packet I/O and

efficient data plane processing in multi-gigabit scenarios. While NFV aims to virtual-

ize network functions on general-purpose servers, this virtualization introduces over-

head that can impact performance. DPDK helps mitigate this by providing a highly

optimized user-space packet processing framework: it includes optimized libraries and

drivers that enable fast packet I/O, advanced packet classification, and efficient data

manipulation for typical network functions such as routers, firewalls, load balancers

and so on. DPDK is managed by the Linux Foundation and constantly maintained

by the most relevant companies in the field of NFV.

2.3 Non-blocking algorithms

Non-blocking algorithms are a type of concurrent programming technique used to de-

sign systems that can handle multiple tasks or processes simultaneously without the

possibility of blocking each other.

In traditional blocking algorithms, a process or task may block or wait for another

process to complete before proceeding. This typically happens when exclusive access

Chap. 2 Background 19

§2.4 Where this dissertation fits

to specific resources is granted (like in the case of locks, mutex, and semaphores),

leading to inefficiencies and delays in the system, especially when multiple processes

are involved.

On the contrary, non-blocking algorithms allow multiple processes to proceed inde-

pendently without waiting for each other. Each process operates on its own copy of

the data, while the algorithm ensures that conflicts or collisions are resolved without

blocking or waiting for other processes.

Non-blocking algorithms can improve the performance, scalability, as well as respon-

siveness of concurrent systems, particularly in high-load and distributed environments.

They are mainly based on specific hardware support from CPUs for read-modify-

write (RMW) operations like compare-and-swap (CAS), load-link/store-conditional,

or transactional memory [33, 34].

2.4 Where this dissertation fits

2.4.1 Metronome

As of Section 2.2, Metronome is developed in a polling environment like DPDK but

presents CPU-proportional features similar to XDP. The evaluation in Chapter 5

widely compares Metronome, static DPDK polling and XDP.

Metronome’s scale-out policy is slightly different than the standard one: in fact, the

queue-to-thread binding is not fixed but rather dynamic, as it depends on which

thread wins the race for a certain queue (See Figure 2.3).

2.4.2 Non-blocking, single-queue driver

The main difference with respect to the state of the art is the deployment of a scale-

up policy instead of the current scale-out mechanism presented in Section 2.2.1 (see

Chap. 2 Background 20

§2.4 Where this dissertation fits

Figure 2.3: Metronome’s variation of the scale-out policy

Figure 2.2 on the right). The reason behind this is that a single queue shared among

different threads enables global visibility of the workload to be processed by all the

threads, therefore implying a work-conserving policy for network stacks and, conse-

quently, minimizing mean and tail latency (see Section 6.1 for a broader explanation

with practical results from simulations).

The design and implementation of a shared queue among threads are made possible

through non-blocking instructions and principles like the one presented in Section

2.3. The introduction of such instructions and their HW support is quite recent, and

this is one of the reasons why this approach was not explored before: without these

instructions, the only possibility of a scale-up system would have been through a lock

mechanism, which of course would have caused significant performance limitations.

As said, the networking community hardly knows the approaches presented in 2.3,

and the author hopes that this dissertation can be a first approach in bridging the

gap between the two worlds.

Chap. 2 Background 21

Part I

Metronome

22

Introduction

In this Part, the author presents Metronome, a novel solution aimed at concurrently

achieving two objectives: providing CPU utilization proportional to the workload and

enabling the flexible sharing of CPU resources between I/O tasks and applications.

These two joint goals are set to overcome Problems 1 and 2 presented in Section 1.2.

Metronome is an approach devised to replace the continuous DPDK polling with

a sleep&wake intermittent approach. Albeit this might seem in principle an obvious

idea, its advantages are linked to several factors that the author copes within this part.

First, a proper implementation/usage of sleep&wait operating system services needs

to be put in place. As for this aspect, Metronome can work effectively by relying on

microsecond-level sleep phases supported by either the Linux nanosleep() service or

an own new service called hr sleep(). The latter offers a few advantages and is also

independent of limitations related to system parameterization and thread priorities.

Second, Metronome revolves around a novel architecture and operating mode for

DPDK, where incoming traffic, from either a single receive queue or multiple ones, is

shared between multiple threads through a trylock—as it will be discussed this also

offers advantages by the side of robustness versus operating system thread-scheduling

decisions. These threads dynamically switch—in a coordinated manner—from polling

the receive queue to sleep phases for short and tunable periods of time when the

queue is idle. Owing to a suitable adaptation strategy that tunes the sleeping times

23

depending on the load conditions, Metronome achieves a stable tunable latency and

no substantial packet loss difference compared to standard DPDK while reaching a

significant reduction for both CPU usage and power consumption. This part is divided

into three chapters:

1. Chapter 3 presents Metronome’s architecture, in particular with respect to the

engineering of a high-performance sleep service (and its comparison to Linux’

nanosleep()) and the multi-threaded model to enhance robustness.

2. Chapter 4 describes Metronome’s adaptive model, which has the goal of fine-

tuning the sleep period depending on the actual traffic load, which is estimated

at runtime.

3. Chapter 5 presents a deep evaluation of Metronome, focusing on different perfor-

mance indicators like CPU consumption, power consumption, latency, through-

put, and so on, as well as the comparison with similar solutions like static DPDK

polling and XDP.

A first version of Metronome has been presented at ACM CoNEXT 2020. An extended

version was also published on IEEE/ACM Transactions on Networking in October

2022. Metronome is also publicly available at [35]. This part partially includes figures

and verbatim copies of the text from the papers presenting Metronome [20, 21].

24

Chapter 3

Metronome architecture

3.1 Fine-grained Thread Sleep Service

The precision of the thread-sleep interval supported by the operating system, is es-

sential for the construction of any solution where the following two objectives need

to be jointly pursued: 1) threads must leave the CPU if there is currently nothing

to do (in our case by the side of packet processing); 2) threads must be allowed to

be CPU rescheduled—gaining again control of the CPU—according to a tightly con-

trolled timeline. Point 2) would allow the definition of an architectural support where

we can be confident that threads will be able to be CPU dispatched exactly at (or

very close to) the point in time where we would like to re-execute a poll operation

on the state of a NIC—to determine whether incoming packets need to be processed.

On the other hand, point 1) represents the basis for the construction of a DPDK

architecture not based on full pre-reserving of CPUs to process incoming packets.

In current conventional implementations of the Linux kernel, the support for (fine-

grained) sleep periods of threads is based on the nanosleep() system call. A few limits

of this service are related to its dependency on a slack factor assigned to threads, which

is checked when they request to sleep. This factor can be controlled using the prctl()

system call, putting it to the minimal value of 1. If such a setting is not adopted,

Chap. 3 Metronome architecture 25

§3.1 Fine-grained Thread Sleep Service

then for any thread that is not in the real-time CPU-scheduling class we have at least

50 microseconds as the slack imposed by the Linux kernel, which makes the awake

of the thread less controllable in terms of precision under fine-grained sleep requests.

Furthermore, when entering the kernel level execution of nanosleep(), the Thread

Control Block (TCB) is checked because of the need to determine the current slack

value, which makes the service run a few machine instructions to reconcile the real

value to be adopted in the sleep phase with the information kept in the TCB.

While developing Metronome, we also implemented an alternative sleep service,

namely hr sleep(), mountable through an external kernel module. This variant

fully avoids any interaction with thread management information at the kernel level

(such as the current slack value kept in the TCB). Hence, it also avoids running the

additional machine instructions needed to manage this information, for any CPU-

scheduling class of threads (real-time or not).In any case, in Figure 3.1 we show that

the performance of hr sleep() is completely similar to the one of nanosleep() under

the scenario where the latter is configured with the minimal admissible slack currently

supported by the Linux kernel. As said, this setting of kernel-level parameters is not

requested at all when using hr sleep(). The tests have been conducted on an isolated

NUMA node equipped with Intel Xeon Silver 2.1 GHz cores. The server is running

Linux kernel 5.4. We have run an experiment where a million samples of the wall-

clock-time elapsed between the invocation of the sleep service and the resume from

the sleep phase are collected. This wall-clock-time interval has been measured via

start/end timer reads operated through rdtscp(). We show the boxplots for both

the sleep services with different timer granularity requests (1, 10, 100 µs). These

data have been collected by running the thread issuing the sleep request as a classical

SCHED OTHER (normal) priority thread and—as hinted before—with the timer slack of

Chap. 3 Metronome architecture 26

§3.2 Actual Thread Operations

hr sleep nanosleep

3.8

3.9

L
at

en
cy

(µ
s)

(a) 1 µs

hr sleep nanosleep

13.450

13.475

13.500

L
at

en
cy

(µ
s)

(b) 10 µs

hr sleep nanosleep
108.4

108.5

108.6

L
at

en
cy

(µ
s)

(c) 100 µs

Figure 3.1: Boxplots for hr sleep() and nanosleep() latencies

nanosleep() set to 1µs. The results show that hr sleep() provides some minimal

gains both in terms of mean latency and variance even under such extreme setting of

the slack value for nanosleep(). In any case, the avoidance of the reliance on kernel-

level parameters makes hr sleep() fully independent of any kernel configuration

choice for the minimal admissible slack.

3.2 Actual Thread Operations

In this section, we describe how threads in charge of processing packets operate in

Metronome. To this end, let us start with a brief discussion of the state-of-the-art

DPDK architecture: on the receiving side, NICs may convey their incoming traffic

into a single Rx queue or split such traffic into multiple Rx queues through Receive

Side Scaling (RSS). A DPDK thread normally owns (and manages) one or more Rx

queues, while an Rx queue belongs to (namely, is managed by) one DPDK thread

[36]. Therefore, the behavior of a DPDK thread is no more than an infinite while(1)

loop in which the thread constantly polls all the Rx queues it is in charge of. This

approach raises some important shortcomings such as (i) greedy usage of CPU even

in light load scenarios and (ii) prevention of any Rx queue sharing among multiple

threads. As for point (ii) we note that in 40GbE+ NICs, queues experience heavy

Chap. 3 Metronome architecture 27

§3.2 Actual Thread Operations

loads despite the use of the RSS feature, e.g. on a 100Gb port with 10 queues,

each queue can experience 10Gb rate traffic or even more. Preventing multi-threaded

operations on each single Rx queue, and the exploitation of hardware parallelism for

processing incoming packets from that queue, looks therefore to be another relevant

limitation (see Section 5.6).

Compared to the above described classical thread operations in state-of-the-art

DPDK settings, we believe smarter operations can be put in place by sharing a Rx

queue among different threads and putting these threads to sleep, when queues are

idle, for a tunable period of time, depending on the current traffic characteristics.

In other words, via a precise fine-grained sleep service, and lightweight coordination

schemes among threads, we can still control and improve the trade-off between re-

source usage and efficiency of packet processing operations.

To this end, the hr sleep() service has been coupled in Metronome with a multi-

threaded approach to handle the Rx queues. In more detail, in our DPDK architecture

we have multiple threads that sleep (for fine grained periods) and then, upon execution

resumption, race with each other to determine a single winner that will actually take

care of polling the state of some Rx queue for processing its incoming packets. In this

approach we do not rely on any additional operating system services to implement

the race; rather, we implemented the race resolution protocol purely at user space

via atomic Read-Modify-Write instructions, in particular the CMPXCHG instruction on

x86 processors, which has been exploited to build a lightweight trylock() service.

The race winner is the thread that atomically reads and modifies a given memory

location (used as the lock associated with an Rx queue), while the others simply

iterate on calling our new hr sleep() service, thus immediately (and efficiently, given

the reduced CPU-cycles usage of hr sleep()) leaving the CPU—given that another

Chap. 3 Metronome architecture 28

§3.2 Actual Thread Operations

thread is already taking care of checking with the state of the Rx queue, possibly

processing incoming packets. Interested readers can have a look at Section 3.3 for a

basic coding example of DPDK-traditional and Metronome approaches.

We also note that using multiple threads according to this scheme allows creating

less correlated awake events and CPU-reschedules, leading to (i) more predictability

in terms of the maximum delay we may experience before some Rx is checked again

for incoming packets and (ii) less work to be done for each thread, since the same

workload is split across more cores. This is true especially when the CPU-cores on

top of which Metronome threads run are shared with other workload. In fact, the

multi-thread approach reduces the per-CPU load of Metronome. This phenomenon

of resiliency to the interference by other workloads will be assessed quantitatively in

Section 5.6, along with the benefits for the applications sharing the same cores with

Metronome.

Overall, with Metronome we propose an architecture where Rx queues can be

efficiently shared among multiple threads (see Figure 3.2): to each queue corresponds a

lock which grants access to that queue. Threads can acquire access to a queue through

our custom trylock() implementation, which provides non-blocking and minimal

latency synchronization among them. For each of its queues, every thread tries to

acquire the corresponding lock, and passes to a different queue chosen randomly (see

Section 4.5) if lock acquisition fails. Otherwise, if the thread wins the lock race

it processes that queue as long as there are still incoming packets, then it releases

the lock once the queue is idle. Once a thread has processed (or at least has tried

to process) the Rx queues, it can go to sleep for a period of time proportional to

(and controllable in a precise fine-grained manner depending on) the traffic weight it

has experienced during its processing. Scheduling an awake-timeout through a fine-

Chap. 3 Metronome architecture 29

§3.3 Skeleton code

1

2

3

4

NIC Rx queues Threads

1

2

3

Figure 3.2: Metronome architecture

Listing 3.1: A standard DPDK polling loop

1 curr_queue = THREAD_ASSIGNED_QUEUE;

2

3 while (1) {

4 nb_rx = receive_burst(queue[curr_queue], pkts , BURST_SIZE);

5 if (nb_rx == 0)

6 continue;

7 process_and_send_pkts(pkts , nb_rx);

8 }

grained sleep service enables very precise and cheap thread-sleep periods, which are

essential at 10Gb+ rates, and can still provide resource savings at lower rates. How

a thread can elicit an awake-timeout period without incurring an Rx queue filling is

carefully explained through our analytical model in Chapter 4. This model is used to

make the Metronome architecture self-tune its operations, providing suited trade-offs

between resource usage (CPU cycles and energy) and packet processing performance.

3.3 Skeleton code

We briefly compare the classical and Metronome methods through a simplified

(yet meaningful) code example of a typical DPDK thread routine. This example only

Chap. 3 Metronome architecture 30

§3.3 Skeleton code

Listing 3.2: Our novel DPDK processing loop

1 curr_queue = THREAD_ASSIGNED_QUEUE;

2

3 while (1) {

4 if(! trylock(lock[curr_queue])) {

5 curr_queue = randint(n_queues);

6 hr_sleep(timeout_long);

7 continue;

8 }

9

10 while(nb_rx = receive_burst(queue[curr_queue], pkts , BURST_SIZE))

11 process_and_send_pkts(pkts , nb_rx);

12 unlock(lock[i]);

13

14 hr_sleep(timeout_short);

15 }

focuses on the different coding approaches, rather than other aspects (e.g., implement-

ing the actual network functionalities, and calculating the optimal timer through our

analytical model...). Both examples show a typical packet processing task. The usual

DPDK implementation is shown in Listing 3.1, while our novel proposal is depicted

in Listing 3.2. While both solutions include a set of Rx queues (queue[]) to be pro-

cessed, in Listing 3.1 each thread has assigned a specific queue in an exclusive way

(line 1), while in Listing 3.2 queues are shared among multiple threads and there-

fore require access through the trylock() mechanism (see line 4). In Listing 3.1

the thread tries to retrieve a burst of packets (line 4) of maximum size BURST SIZE,

processes it (line 7) and immediately scans again its set of queues, regardless of

the fact that those queues may be experiencing low traffic (or no traffic at all). We

highlight that this behavior is the real cause of the 100% constant CPU utilization by

a single thread, as threads are working in a traffic-unaware manner. As for the later

point, this level of CPU usage is negatively reflected on energy consumption and also

on turbo-boost waste.

Listing 3.2 shows our novel approach: once the lock for a certain queue is acquired,

Chap. 3 Metronome architecture 31

§3.3 Skeleton code

the thread processes that queue until it becomes empty (while() loop in lines 10-11),

then it releases the lock (line 12) and goes to sleep for a timeout short period. If a

certain lock can’t be granted, that queue is skipped as a different thread is already

processing it: the thread changes its curr queue, extracting it randomly from the set

of all available queues (line 5), and goes to sleep for a timeout long period.

Despite the simplicity of these examples, we believe they clearly point out the differ-

ence between a traffic-aware policy and a static one simply based on greedy resource

usage.

Chap. 3 Metronome architecture 32

Chapter 4

Metronome Adaptive tuning

In this Chapter we provide an approach to adaptively tune the behavior of the

Metronome architecture. Metronome is designed to operate via a sequence of re-

newal cycles Θ(i), which alternate Vacation Periods with Busy Periods. As shown in

Figure 4.1, a vacation period V (i) is a time interval where all the deployed packet-

retrieval threads are set to sleep mode, hence incoming packets, labeled as NV (i) in

the figure, get temporarily accumulated in the receive buffer. For simplicity, we first

consider a single Rx queue, then we expand our model to multiple queues in Section

4.5. When the first among the sleeping threads wakes up and wins the race, via a

successful trylock(), for handling the incoming packets from the Rx queue, a busy

period B(i) starts. This period will last until the whole queue is depleted by either

the NV (i) formerly accumulated packets, as well as the new NB(i) packets arriving

along the busy period itself B(i)—see the example in Figure 4.1.

After depleting the queue, the involved thread will return to sleep. Note that other

concurrent threads which wake up during a busy period will have no effect on packet

processing—failing in the trylock() they will just note that Rx queue unloading

is already in progress and will therefore instantly return to sleep, thus freeing CPU

resources for other tasks.

Chap. 4 Metronome Adaptive tuning 33

§4.1 Metronome Multi-Threading Strategy

4.1 Metronome Multi-Threading Strategy

As later demonstrated in Section 5.6, Metronome relies on multiple threads to guaran-

tee increased robustness against CPU-reschedule delays of each individual Metronome

thread, which is no longer in sleep state—the sleep timeout has fired and the thread

was brought onto the OS run-queue. Such delay can be caused by CPU-scheduling

decisions made by the OS—we recall that these decisions depend on the thread work-

load, their relative priorities and their current binding towards CPU-cores.

In such conditions, Metronome’s control of the vacation period duration is not

direct, as it would be in the single-thread case by setting the relevant timer, but it

is indirect and stochastic, as this period is the time elapsing between the end of a

previous busy period and the time in which some deployed thread awakes again and

acquires the role of manager of the Rx queue. The question therefore is: how to

configure the awake timeouts of the different deployed Metronome threads?

Unfortunately, the simplest possible approach of equal timeouts comes along with

performance drawbacks: we will demonstrate later on (see Section 5.1.3) that when

timeouts are all set to a same value, CPU consumption significantly degrades as load

increases, which is antithetic with respect to the objectives of Metronome. Indeed, es-

pecially under heavy packet arrival rate, threads would wake up, therefore consuming

CPU cycles, just to find out that another thread is already doing the job of unloading

the Rx queue.

We thus propose a diversity-based strategy for configuring the wake up timeouts

of different threads, which aims at mimicking a classical primary/backup approach,

but without any explicit (and necessarily adding some extra CPU consumption) co-

ordination, i.e. by using purely random access means. Each thread independently

Chap. 4 Metronome Adaptive tuning 34

§4.2 Metronome Analysis

classifies itself as being in primary or backup state, according to the following rules:

• A thread becomes primary when it gets involved in a service time (it is the

winner of the trylock() based race); at the end of the busy period it carried

out, it reschedules its next wake-up time after a “short” time interval TS;

• A thread classifies itself as backup when it wakes up and finds an on-going busy

period (i.e. another thread is already unloading the queue); it then schedules

its next wake-up time after a “long” time interval TL > TS.

In high load conditions, the above rules yield a scenario in which one thread at a

time (randomly changing in the long term—-see Figure 4.2) is in charge to poll the

Rx queue at a reasonable frequency, whereas all the remaining ones occasionally wake

up just for fall-back acquisition of the ownership on the Rx queue if for some reason

the thread that was primary gets delayed, e.g. by the OS CPU-scheduling choices.

Conversely, at low loads more threads will happen to be simultaneously in the primary

state, thus permitting to significantly relax the requirements on the “short” awake

timeout TS and motivating the adaptive strategy introduced in Section 4.4.

4.2 Metronome Analysis

4.2.1 Background

Let us non-restrictively assume that, once a thread wakes up, the packets accumulated

in the Rx buffer get retrieved at a constant rate µ packets/seconds.It readily follows

that the duration of the busy period B(i) depends on the number of accumulated

packets, and, more precisely, it comprises two components: i) the time needed to

deplete the first NV (i) packets arrived during V (i), plus ii) the extra time needed

to deplete the next NB(i) packets arrived since the start of the the busy period—in

Chap. 4 Metronome Adaptive tuning 35

§4.2 Metronome Analysis

V(i) B(i)B(i-1) V(i+1) B(i+1)

NV(i)=4 NT(i)=6

Renewal cycle Q(i)

Vacation period Busy period

Arriving packets
get accumulated

Rx queue is
unloaded until

no packets are left

Figure 4.1: System model & renewal cycle

A

B

𝑇𝐿𝑇𝑆 𝑇𝑆

𝑇𝐿 𝑇𝐿 𝑇𝑆 𝑇𝐿 𝑇𝐿

Busy period Trylock acquired Trylock failed

𝑇𝐿 𝑇𝑆

𝑇𝐿

𝑇𝐿

Figure 4.2: Vacation period and timeline of residual awake timeouts

formulae:

B(i) =
NV (i) +NB(i)

µ
(4.2.1)

Since NV (i) and NB(i) depend on the vacation period V (i), in most generality drawn

from a random variable V , we can take conditional expectation at both sides of (4.2.1)

with respect to V . Being λ the (unknown) mean packet arrival rate, we obtain the

following fixed point equation1 in E [B|V]:

E [B|V] =
1

µ
E [NV (i) +NB(i)|V] =

λ

µ
(V + E [B|V]) . (4.2.2)

1In the derivation, we exploited the following well known fact (direct consequence of the Little’s
Result): the average number E[N] of packets arriving during a time interval of mean length E[T] is
E[N] = λE[T].

Chap. 4 Metronome Adaptive tuning 36

§4.2 Metronome Analysis

0 10 20 30 40 50 60 70
Vacation period [s]

0

0.005

0.01

0.015

0.02

D
en

si
ty

(a) 2 cores

0 10 20 30 40 50
Vacation period [s]

0

0.01

0.02

0.03

0.04

D
en

si
ty

Experimental data
Theoretical PDF

(b) 3 cores

0 10 20 30 40 50
Vacation period [s]

0

0.02

0.04

0.06

0.08

D
en

si
ty

(c) 5 cores

Figure 4.3: Vacation period PDF: analysis vs experiments, TS = TL

which yields an explicit expression of how a busy period E [B|V] is affected by the

relevant vacation period:

E [B|V] = V
λ/µ

1− λ/µ
(4.2.3)

If we conveniently define ρ = λ/µ, we can derive an explicit expression which relates

ρ to the controllable Vacation Period duration V and the relevant observable Busy

Period E[B|V]— this expression will be indeed used to estimate ρ in Section 4.4:

ρ =
E [B|V]

V + E [B|V]
(4.2.4)

4.2.2 Vacation Period statistics at high load

It is useful to start from two simplified mean-value analyses relying on two opposite

sets of assumptions valid at either high load or low load. The two different models

will be then blended into a single one in Section 4.4. Let M ≥ 2 be the number

of deployed Metronome threads. In high load conditions, for reasons that will soon

become evident, we can assume that only one of such threads is in the primary state,

whereas all the remainingM−1 are in backup state. Once the primary thread releases

the Rx queue lock and schedules its short timer TS, two possible cases may occur:

• no backup thread wakes up during the sleep timeout TS; in this case the primary

thread will get back control of the Rx queue for the next round, and will remain

Chap. 4 Metronome Adaptive tuning 37

§4.2 Metronome Analysis

primary;

• one of the remaining M − 1 backup threads wake up before the end of the sleep

timeout TS and thus becomes primary; when the former primary thread wakes

up, it will find a busy period2 and will therefore acquire the role of backup

thread, rescheduling its next wake up timeout after a time TL.

Let us now make the assumption that the (current) M − 1 backup threads were

earlier CPU-rescheduled at independent random times. This Decorrelation assump-

tion, indeed later on verified in Figure 4.3 using experimental results, is justified by

the fact that each service time, due to its random duration, de-synchronizes the pri-

mary thread CPU-reschedule from the remaining ones; since after a few busy cycles all

threads will have the chance to become primary, even if initially being CPU-scheduled

at around the same times, their CPU-rescheduling instants will rapidly “decorrelate”.

The statistics of the random variable V (vacation period) can be computed as the

minimum between i) the fixed wake-up timeout TS of the primary thread, and ii) the

wake-up timeout of any of the remaining M −1 threads, which, owing to the previous

decorrelation assumption, have been CPU-rescheduled in any random instant in the

range between 0 and TL before the end of the current busy period. It readily follows

that the cumulative probability distribution function of V is given by:

CDFV (x) = P (V ≤ x) =

1−
(
1− x

TL

)M−1

x < TS

1 x ≥ TS

(4.2.5)

and the mean vacation period for a given configuration of the short and long awake

timeouts, and for a given number of threads, is trivially computed as:

E[V] =

∫ TS

0

(1− CDFV (x))dx =
TL

M

(
1−

(
1− TS

TL

)M
)

(4.2.6)

2In high load conditions, owing to equation 4.2.3, the average busy period lasts significantly longer
than the vacation period.

Chap. 4 Metronome Adaptive tuning 38

§4.2 Metronome Analysis

Finally, the probability that one of the M − 1 backup threads gains access to the Rx

queue at its wake-up time is given by:

Ps,succ =

∫ TS

0

1

TL

(
1− x

TL

)M−2

dx =

(
1− TS

TL

)M−1

M − 1
(4.2.7)

4.2.3 Vacation period statistics at low load

While, at high load, a neat pattern emerges in terms of one single primary thread

at any time, with multiple backup threads, it is interesting to note that at low load

Metronome yields a completely different behavior. Indeed, owing to equation (4.2.3),

as the offered load reduces, the average busy period duration becomes small with

respect to the vacation period duration. It follows that when a primary thread gets

control of the Rx queue, it very rapidly releases such control, so that another thread

waking up will find the queue available with high probability. It follows that in

the extreme case, all threads will always remain in the primary state3 and thus will

periodically reschedule their next wake-up times after a short interval TS. This case is

even simpler to analyze than the previous one, as the CDF of the vacation time directly

follows from (4.2.5) by simply setting TL = TS and by considering M “competitors”,

in formulae:

CDFV (x) = P (V ≤ x) = 1−
(
1− x

TS

)M
(4.2.8)

and mean vacation period simplifying to E[V] = TS/M .

4.2.4 Experimental verification of the decorrelation assump-
tion

To verify the validity of the decorrelation assumption used in the above models, Figure

4.3 compares the probability distribution function obtained by taking derivative of the

3This is because each time an awaken thread finds the Rx queue not locked by another thread,
then it acquires the primary role thanks to its successful trylock() operation.

Chap. 4 Metronome Adaptive tuning 39

§4.3 Adaptation policy under general load conditions

CDF in equation (4.2.5), i.e., for x < TS,

PDFV (x) =
M − 1

TL

(
1− x

TL

)M−2

(4.2.9)

with experimental results. We have specifically focused on the case TL = TS as in

this case the formula in equation (4.2.5) is expected to hold independently of the load

(primary and backup threads use the same awake timeouts). Results, obtained with

awake timeouts set to 50µs and different numbers of threads M , suggest that the

decorrelation approximation is more than reasonable and the proposed model is quite

accurate. Furthermore, the results also show that, in the real case—although rarely—

actual CPU-reschedules after a sleep period can occur after the maximum time delay

TL, because of CPU-scheduling decisions by the OS—for example favoring OS-kernel

daemons. However, such impact becomes almost negligible in Metronome with just

M = 3 deployed threads, pointing to the relevance of the adopted multi-threading

approach.

4.3 Adaptation policy under general load condi-

tions

We propose a simplified, but still theoretically motivated, approach which allows us

to blend the results obtained via the two extreme low and high load models into a

single and convenient analytical framework.

More specifically, in intermediate load conditions we cannot anymore assume that

just one single thread (as in high load conditions), or all threads (as in low load

conditions), are in primary state along time. Rather, apart from the single thread

that has last depleted the Rx queue, which is therefore surely in primary state, also

some of the remaining M − 1 threads will be in primary state whereas others will be

Chap. 4 Metronome Adaptive tuning 40

§4.3 Adaptation policy under general load conditions

in backup state. Let us therefore introduce a random variable P which represents the

number of the remaining threads in primary state. M − 1 − P will therefore be the

number of remaining threads in secondary state.

Let us now assume that each of the remaining M−1 threads can be independently

found in primary or backup state with probability p (which will be determined later

on). Then, the random variable P representing the number of remaining threads in

primary state trivially follows the Binomial distribution:

Prob(P = k) =

(
M−1

k

)
pk(1− p)M−1−k

Then, we can compute the average vacation time also in intermediate load conditions,

by taking conditional expectation over this newly defined random variable P . This

permits us to generalize equation (4.2.6) as follows:

E[V] = E[E[V |P]] =

=
M−1∑
k=0

(
M−1

k

)
pk(1− p)M−1−k

∫ TS

0

(
1− x

TS

)k
·

·
(
1− x

TL

)M−1−k

dx =

=

∫ TS

0

(
1− px

TS

− (1− p)x

TL

)M−1

dx =

=
1− ((1− p)(1− TS/TL))

M

M
(

p
TL

+ 1−p
TS

)
Furthermore, assuming TL >> TS, we can conveniently simplify the above expression

and approximate it as:

E[V] =
TS

M
· 1− (1− p)M

p
(4.3.1)

Note that, for p → 0, namely when the probability to find another thread in the

primary state becomes zero (high load conditions), equation (4.3.1) converges to the

Chap. 4 Metronome Adaptive tuning 41

§4.4 Metronome Adaptation and Tradeoffs

expected value TS, whereas E[V] = TS/M for p = 1 (as for low load conditions, i.e.

all the threads becoming primary).

As a last step, it suffices to relate p with the offered load. To this purpose, let

ρ = λ/µ be the probability that the Rx queue is busy at a random sample instant. It is

intuitive to set p = (1−ρ), as the probability p that a thread is in the primary state is

the probability that when this thread has last sampled the queue, it has found it idle,

i.e. 1 − ρ. This finally permits us to formally support our proposed formula (4.4.3)

as the load-adaptive TS setting strategy. Summarizing for the reader’s convenience,

being V̄ a constant target vacation period, and ρ the current load estimate, TS can

be set as:

TS = M
1− ρ

1− ρM
· V̄

Note that this rule can be conveniently rewritten in a more intuitive and simpler to

compute form, as:

TS = V̄
M

1 + ρ+ · · ·+ ρM−1

4.4 Metronome Adaptation and Tradeoffs

Whenever the mean arrival rate is non-stationary, but varies at a time scale reasonably

longer than the cycle time, the load conditions can be trivially run-time estimated

using equation (4.2.4). For instance, the simplest possible approach is to consider for

ρ(i) = λ(i)/µ the exponentially weighted estimator:

ρ(i) = (1− α)ρ(i− 1) + α
B(i)

V (i) +B(i)
(4.4.1)

Established that measuring the load is not a concern for Metronome, a more

interesting question is to devise a mechanism which adapts the awake timeouts to

the time-varying load. The obvious emerging trade-off consists in trading the polling

Chap. 4 Metronome Adaptive tuning 42

§4.4 Metronome Adaptation and Tradeoffs

frequency, namely the frequency at which threads wake up, with the duration of the

vacation period which directly affects the packet latency. Indeed, if we assume that the

serving thread is capable to drain packets from the Rx queue at a rate µ greater than

or equal to the link rate, namely the maximum rate at which packets may arrive (in

our single-queue experiments, 10 gigabit/s), then once the thread starts the service,

packets will no longer accumulate delay. Therefore, the worst case latency occurs

when a packet arrives right after the end of the last service period, and is delayed for

an entire vacation period.

It follows that an adaptation strategy that targets a constant vacation period du-

ration irrespective of the load appears to be a quite natural approach. Let us recall

that, under the assumption TL >> TS, the average vacation period at high load given

by equation (4.2.6) simplifies to E[V] ≈ TS. Conversely, at low load, we obtained

E[V] = TS/M . Therefore, being V̄ our target constant vacation period, the rule to

set the timer TS at either high or low loads reduces to:{
TS = V̄ highload

TS = M · V̄ lowload
(4.4.2)

The analysis of the general case (intermediate load) is less straightforward, but

can be still formally dealt with by assuming that threads are independent and are in

primary or backup state according to the probability that, while they wake up, they

find the Rx queue idle or busy, respectively. As shown in Section 4.3, we can prove

that, in this general case, under the assumption TL >> TS, the rule to set the timer

TS becomes:

TS = M
1− ρ

1− ρM
· V̄ (4.4.3)

which, as expected, converges to (4.4.2) for the extreme high load case ρ → 1 and the

extreme low load case ρ → 0.

Chap. 4 Metronome Adaptive tuning 43

§4.5 The multiqueue case

Finally, we stress that Metronome does not sacrifice latency, but provides the

possibility to trade latency for CPU consumption. Indeed, the duration of the chosen

vacation period will determine the performance/efficiency trade-off: the longer the

chosen vacation time, the lower the polling rate and thus the CPU consumption, at

the price of a higher latency. If a deployment must guarantee low latency then it

should either configure a small vacation time target, or even disable Metronome and

use standard DPDK.

4.5 The multiqueue case

When Metronome is used with 40+Gb NICs, one queue becomes not enough to sustain

line rate traffic. Therefore, a split of the incoming traffic into multiple receive queues

through RSS is needed. We now introduce the N parameter, which represents the

number of Rx queues for a certain NIC. Given M as the total number of threads in

the system, we believe it should be at least as big as N , so that every queue can

have one primary thread associated to it (M ≥ N). In this scenario, we have N

primary threads (since everyone of them has won the lock race for a different queue)

and M − N secondary threads. In a scenario with multiple queues, we believe it is

not efficient to statically bind a thread to a certain queue (see Section 5.8.6), so we

propose a different approach:

• once a primary thread has won the race and depleted a queue, it goes to sleep

for a TS period and when it wakes up, it contends for the same queue as we

know it is likely for it to win the race again.

• once a backup thread has lost a lock race, it chooses the queue to be contended

at its next wakeup randomly.

Chap. 4 Metronome Adaptive tuning 44

§4.5 The multiqueue case

The random selection of the next queue for the backup thread ensures a certain

decorrelation among the threads in the next queue selection and also fairness with

respect to the queue checks. While the TL value remains fixed, we update equation

(4.4.3) as follows:

TS =
M

N
· 1− ρi

1− ρ
M
N
i

· V̄ for i = 1, . . . , N (4.5.1)

We notice two differences with the single queue version. The former is that the M

parameter is now replaced with M/N , as that is the average number of threads taking

care of a certain queue at any moment. The latter is that the ρ parameter is now

per-queue based, as each queue can experiment different traffic rates (and therefore,

queue occupancy and vacation periods) at any time.

Chap. 4 Metronome Adaptive tuning 45

Chapter 5

Experimental results

Our experimental campaign starts with the appropriate tuning for the V̄ , M and

TL parameters and the analysis of the subsequent tradeoffs. Section 5.2 shows how

to convert V̄ in terms of latency. Section 5.3 shows how Metronome adapts to a

variable traffic load. Section 5.4 discusses in detail both strengths and weaknesses

of Metronome and static DPDK in different aspects (latency, CPU usage and power

consumption). Section 5.5 compares Metronome and XDP, while Section 5.6 shows

the impact of Metronome in common CPU sharing scenarios and Section 5.7 shows

how interference impacts the vacation period. While tests up to Section 5.6 have

been conducted with a single Rx queue using Intel X520 NICs (10Gbps), Section

5.8 evaluates Metronome in a multi-queue scenario with Intel XL710s (40Gbps), and

subection 5.8.7 evaluates a typical hundred-gigabit and beyond scenario with many

queues using Mellanox ConnectX-5 (100Gbps). For evaluating the system we used

a server running Linux kernel 5.4 equipped with Intel® Xeon® Silver @2.1 GHz,

running the l3fwd DPDK application [37] on an isolated NUMA node and generating

constant bit rate UDP traffic with MoonGen [38]. For benchmarking our system,

we used the evaluation suite provided by Zhang et al. in [39], as well as the Intel

RAPL package [40] and the getrusage() syscall to retrieve energy usage and CPU

Chap. 5 Experimental results 46

§5.1 Parameters Tuning

consumption. Tests are done with 64B packets, as this is the worst case scenario1.

Unless explicitly stated, the tests are executed using the performance CPU power

governor and with parameters V̄= 10 µs, TL= 500 µs, M=3—each choice is motivated

in the following section. Further tests for two different applications are also shown in

Section 5.9.

5.1 Parameters Tuning

5.1.1 Vacation period (V̄)

First of all, we would like to find a vacation period V̄ which permits us not to lose

packets under line-rate conditions. Table 5.1 shows packet loss, vacation period and

busy period for different values of V̄ , which represents the target V to be used when

calling the hr sleep() service: we found out that 10 µs is a good starting point

as it provides no loss. The test was conducted using the suite’s unidirectional p2p

throughput test, as this test instantly increases the incoming rate from 0 to 14.88

Mpps, so as to be sure that this setting works even in the worst case scenario. We

then analyzed the bidirectional throughput scenario by assigning 3 different threads

to each Rx queue, as we found out that Metronome achieves the same maximum

bidirectional throughput that DPDK can reach (11.61 Mpps per port) by constantly

polling each Rx queue with a different thread. Once a good suitable minimum value

for V̄ is found, we investigate how tuning V̄ affects CPU usage and latency: indeed,

as Table 5.1 shows, the shorter V̄ , the less the queue is left unprocessed as the actual

(namely, the measured) vacation time V decreases, so packets tend to experience

a shorter queuing period. However, such an advantage does not come for free, as

1For tests regarding latency, since [39] uses Moongen’s timestamping capabilities, it is necessary to
add a 20B timestamp to the timestamped subset of packets, thus giving rise to a minimal difference
in terms of offered throughput.

Chap. 5 Experimental results 47

§5.1 Parameters Tuning

Target V [µs] Measured V [µs] Measured B [µs] NV Loss (‰)
5 11.67 13.40 172.39 0
10 19.55 20.24 287.77 0
12 21.99 22.86 326.30 0.0037
15 26.23 27.25 385.18 0.023
20 33.28 38.32 494.39 1.180

Table 5.1: Mean busy and vacation period, NV and packet loss for different target
vacation periods.

0.0 0.5 1.0
0.0

0.5

1.0

2 5 7 10
Vacation period (µs)

0

10

20

30

L
at

en
cy

(µ
s)

Latency

0

20

40

60

80
C

P
U

u
sa

ge
(%

)

CPU usage

(a) 10Gbps traffic

0.0 0.5 1.0
0.0

0.5

1.0

2 5 7 10
Vacation period (µs)

0

10

20

30

L
at

en
cy

(µ
s)

Latency

0

20

40

60

80

C
P

U
u

sa
ge

(%
)

CPU usage

(b) 5Gbps traffic

Figure 5.1: Latency and CPU usage for different target vacant times.

the CPU usage proportionally increases, as shown in Figure 5.1 for different traffic

volumes. We note that all these tests have been performed by relying on 3 Metronome

threads.

5.1.2 Number of threads (M)

As for M, the philosophy underlying Metronome is the one of exploiting multiple

threads for managing a Rx queue, not the one using excessive (hence useless) thread-

level parallelism. In fact, an excessive number of threads comes at almost no useful-

ness: Figure 5.2 shows how the percentage of busy tries increases linearly with the

number of threads, along with a slight cost increase in terms of CPU usage. Further-

Chap. 5 Experimental results 48

§5.1 Parameters Tuning

0.0 0.5 1.0
0.0

0.5

1.0

2 3 4 5 6
M

0

20

40

B
u

sy
tr

ie
s

(%
)

Busy Tries

0

20

40

60

C
P

U
u

sa
ge

(%
)

CPU usage

Figure 5.2: Busy tries and CPU usage
versus M .

2 4 6 8
Vacancy period (µs)

10

20

30

L
at

en
cy

(µ
s)

measured predicted

Figure 5.3: End-to-end latency (box-
plots) vs. Metronome’s predicted la-
tency

more, increasing the threads number comes along with a significant cost in terms of

latency, as the more the threads, the more frequently a primary thread switches to

the backup role leading to longer sleep periods as stated in equation (4.4.3). We ex-

perimented considerable latency implications especially at high rates, as Figure 5.4a

shows. Even for much lower rates, a substantial increase in variance is still visible (see

Figure 5.4b). By the above hints, the single-queue evaluation is done with 3 threads.

2 3 4 5 6
M (# threads)

30

40

50

L
at

en
cy

(µ
s)

(a) 10Gbps traffic

2 3 4 5 6
M (# threads)

25

50

75

L
at

en
cy

(µ
s)

(b) 1Gbps traffic

Figure 5.4: Latency vs. the number of threads M

Chap. 5 Experimental results 49

§5.2 Tuning for latency

5.1.3 Long sleep time (TL)

As for TL, while letting backup threads sleep for a longer period of time alleviates the

percentage of failed attempts of trylock() (busy tries), and therefore the number of

wasted CPU cycles (as Figure 5.5 shows), a shorter TL means higher reactivity when

the primary thread is interfered by OS CPU-scheduling choices. For our evaluation,

we chose 500 µs since (i) it is 50 times bigger than the maximum TS possible value,

we recall that our analytical model assumes that TL >> TS, (ii) Figure 5.5 shows that

most of the advantage of increasing TL happens before 500 µs, while between 500 and

700 µs we experimented a difference of only 1% in CPU usage and around 2% in busy

tries.

0.0 0.5 1.0
0.0

0.5

1.0

100 300 500 700
TL (µs)

0

10

20

30

40

B
u

sy
tr

ie
s

(%
)

Busy Tries

0

20

40

60

C
P

U
u

sa
ge

(%
)

CPU usage

Figure 5.5: Busy tries and CPU usage versus TL.

5.2 Tuning for latency

The adaptation strategy introduced in Section 4.4 uses, as observable (measurable)

tuning parameter, the vacation period V̄ . It is instructive to revisit the previous

analysis so as to tune the system for a desired mean latency requirement. Being N

the number of packets in our system, it follows that (using the same notation and

Chap. 5 Experimental results 50

§5.3 Adaptation

arguments of Section 4.2)

E[N] = E[NV] + E[NB] = λE[V] + ρE[N] → E[N] =
λE[V]

1− ρ

Therefore, from Little’s result, we obtain:

E[T] =
E[V]

1− ρ
(5.2.1)

Since a direct measure of ”just” the queueing delay is technically cumbersome, Figure

5.3 compares the measured end-to-end latency (box plots) with the results of the

above formula (green line), for various measured mean vacation periods E[V] (in

turns obtained with different load values ρ). Apart from the constant offset due to

the propagation delay (orange dashed line) which is not included in the analytical

results, these do closely match experimental ones in terms of slope of the resulting

plots.

5.3 Adaptation

To test the dynamic capabilities of Metronome to adapt to varying workloads, we

modified the Moongen rate-control-methods.lua example to generate constant bit

rate traffic at a variable speed: in a time interval of one minute, Moongen increases

the sending rate every 2 seconds until 14 Mpps of rate is reached at about 30 seconds,

and then it starts decreasing. Figure 5.6a shows how Metronome perfectly matches

the Moongen generated traffic rate and how the TS parameter—set by the threads

proportionally—adapts. Figure 5.6b proves that Metronome promptly adapts CPU

usage with respect to the incoming traffic, starting from about 20% with no traffic

and increasing up to 60% under almost line rate conditions. Also the ρ parameter

correctly adjusts its value along with the traffic load.

Chap. 5 Experimental results 51

§5.4 Comparing Metronome and DPDK

0 10 20 30 40 50
Time (s)

2
4
6
8

10
12
14

R
at

e
(M

p
p

s)

Estimed rate

Moongen rate

TS

18

20

22

24

26

28

T
S

(µ
s)

(a) Rate and TS estimation

0 10 20 30 40 50
Time (s)

20

30

40

50

C
P

U
u

sa
ge

(%
)

CPU usage (%) ρ

0.1

0.2

0.3

0.4

ρ

(b) CPU usage and ρ

Figure 5.6: Metronome’s correct adaptation to the incoming traffic load

5.4 Comparing Metronome and DPDK

We now focus on the comparison between the adaptive Metronome capabilities and

the static, continuous polling mode of DPDK in terms of (i) induced latency, (ii)

overall CPU usage, and (iii) power consumption.

Latency: we tested Metronome in order to investigate how the sleep&wake approach

impacts the end-to-end latency. One of our goals was to experiment a constant va-

cation period, therefore a constant mean latency. Figure 5.7a shows how Metronome

(blue boxplots) successfully fulfills this requirement, despite a negligible increase under

line-rate conditions, which seems obvious. DPDK clearly benefits from its continu-

ous polling operations as it induces about half of the mean latency that Metronome

achieves and is also more reliable in terms of variance (see Figure 5.7a - orange box-

plots). However, rather than very low latency, Metronome targets an adaptive and

fair usage of CPU resources with respect to the actual traffic. The minimum latency

that Metronome can induce is mainly limited by two aspects: the first one is the Tx

Chap. 5 Experimental results 52

§5.4 Comparing Metronome and DPDK

batch parameter. Since DPDK transmits packets in a minimum batch number which

is tunable, as our system periodically experiments a vacation period some packets

may remain in the transmission buffer for a long period of time without actually be-

ing sent: this is clearly visible as variance at low rates increases. To overcome such a

limitation, we ran another set of tests with the transmission batch set to 1, so that no

packets can be left in the Tx buffer. We found out positive impacts on both variance

and (slightly) mean values for very low rates. Downgrading the Tx threshold to 1

comes at the cost of a 2-3% increase in CPU utilization at line rate. The second as-

pect is the minimum granularity that hr sleep() can support, even if the sleep time

requested is much smaller than microseconds (i.e., some nanoseconds). By tuning the

first parameter and patching hr sleep() in order to immediately return control if a

sub-microsecond sleep timeout is requested, we managed to obtain a 7.21 µs mean

delay in Metronome which is very close to the DPDK minimum one (6.83 µs), and

also a significant decrease in variance (0.62 µs in Metronome vs. 0.43 µs in DPDK)

while still maintaining a 10% advantage in CPU consumption.

Total CPU usage: Figure 5.7b shows the significant improvements by Metronome

(blue bars): while DPDK’s greedy approach (orange bars) gives rise to fixed 100%

CPU utilization, Metronome’s adaptive approach clearly outperforms DPDK as it is

able to provide 40% CPU saving even under line-rate conditions, while under low rate

conditions the gain further rises to more than 5x (Metronome achieves around 18.6%

CPU usage at 0.5Gbps). We underline that Metronome’s CPU consumption could be

further decreased by increasing the TL value as explained in Section 5.1.

Power consumption: as for energy efficiency, it is critical to examine the two ap-

proaches depending on the different power governors[41] available in Linux. More

specifically, we concentrated on the two most performing ones, namely ondemand and

Chap. 5 Experimental results 53

§5.4 Comparing Metronome and DPDK

10 5 1 0.5
Rate (Gbps)

20

40

60

L
at

en
cy

(µ
s)

Static

Metronome

XDP

(a) Latency boxplot

10 5 1 0.5
Rate (Gbps)

0

100

200

C
P

U
u

sa
ge

(%
)

Static

Metronome

XDP

(b) CPU usage

Figure 5.7: L3 Forwarder example running static DPDK, Metronome and XDP

performance. The first can operate at the maximum possible speed, but dynamically

adapts the CPU frequency by periodically examining the current CPU load and de-

pending on some threshold values, while the second one keeps the CPU cores at their

maximum speed while executing code. While ondemand permits a more adaptive CPU

policy, it is less reactive than performance. In particular, CPU cores need more time

to get to the maximum speed, but this permits some savings in terms of power. This

trade-off is clearly visible in Figures 5.8a and 5.8b: except for the 10Gbps through-

put under the performance power governor scenario, Metronome achieves less power

consumption than the traditional DPDK does, with the maximum gain reached when

operating under no traffic with the ondemand governor (around 27%). We underline

that in the ondemand scenario Metronome’s CPU usage is higher than in the previ-

ously seen plots (∼90% at 10Gbps, ∼70% under no load). While we concentrated on

the performance governor since we wanted to minimize Metronome’s CPU consump-

tion, these tests show that depending on the user/provider’s needs, Metronome can

Chap. 5 Experimental results 54

§5.5 Comparing Metronome and XDP

10 1 0
Rate (Gbps)

0

20

P
ow

er
(W

)

Static Metronome

(a) performance

10 1 0
Rate (Gbps)

0

20

P
ow

er
(W

)

XDP

(b) ondemand

Figure 5.8: Power vs CPU utilization for different power governors.

also achieve significant power saving when compared to static polling DPDK.

5.5 Comparing Metronome and XDP

We believe it is the case for Metronome to be also compared with XDP [31]: this

work has a similar motivation to Metronome’s main one (reduced, proportional CPU

utilization) and is nowadays integrated into the Linux kernel. Despite this similar goal,

the approach of the two architectures is quite different: XDP is based on interrupts

and every Rx queue in XDP is associated to a different, unique CPU core with a

1:1 binding. Through a conversation with one of the XDP authors on GitHub [42],

we discovered that our Intel X520 NICs (running the ixgbe driver) achieve at their

best a close-to line-rate performance: in fact, the maximum we managed to get is

13.57 Mpps with 64B packets. To do this, we had to equally split flows between

four different cores running the xdp router ipv4 example (the most similar one to

DPDK’s l3fwd). The graphs now discussed are obtained using the minimal number

Chap. 5 Experimental results 55

§5.5 Comparing Metronome and XDP

of cores for XDP in order not to lose packets2 (4 cores on 10Gbps and 5Gbps, 1

core on 1Gbps and 0.5Gbps). We remark that if XDP is deployed with the goal of

potentially sustaining line-rate performance, on our test server it should statically be

deployed on four cores since there’s no way to dynamically increase the number of

queues (and therefore, cores) without the user’s explicit command through ethtool:

in that case, XDP’s total CPU usage increases at 52% @1Gbps and 34% @0.5Gbps.

Figure 5.7a shows the latency boxplot for XDP: while (even with interrupt mitigation

features enabled) we see an increased latency at line rate, we experimented similar

latencies at lower rates (we underline that decreasing Metronome’s V̄ and the Tx batch

parameter we could obtain lower latency results as shown in Section 5.4, while XDP is

already operating at its best performance). Figure 5.7 shows XDP’s mean total CPU

utilization, which is clearly much higher because of the per-interrupt housekeeping

instructions required to lead control to the packet processing routine, which have an

incidence, especially at higher packet rates. On the other hand, XDP occupies no CPU

cycles at all under no traffic, while Metronome still periodically checks its Rx queues.

This different approach permits Metronome to be highly reactive in case of packet

burst arrivals (as shown in Section 5.1), while XDP loses some tens of thousands of

packets in this case before adapting. In terms of power consumption (Figure 5.8), for

the same reason discussed above XDP consumes more power when processing at line

rate, while permitting significant gains when no traffic is being processed.

2We decreased the Mpps sending rate to 13.57 by sending 72B packets, so that XDP wasn’t losing
packets.

Chap. 5 Experimental results 56

§5.6 Impact

5.6 Impact

We now analyze Metronome’s capabilities to work in a standard CPU-sharing scenario,

where different tasks compete for the same CPU. We first focus on motivating our

multi-threading approach, then we show that the CPU cycles not used by Metronome

can be exploited to run other tasks in the meantime without significantly affecting

Metronome’s capabilities. In both the experiments, Metronome shares its same three

cores with a VM running ferret, a CPU-intensive, image similarity search task com-

ing from the PARSEC [43] benchmarking suite. 3. Because the Metronome task is

more time sensitive than the ferret one, we give Metronome a slight scheduling ad-

vantage by setting its niceness value to -20, while the VM’s niceness is set to 19 since

it has no particular time requirements. In any case, the two are still set to belong to

the same SCHED OTHER (normal) priority class.

The case for multiple threads: While we previously stated that a few threads are

better for Metronome, we now clarify the reason for using multiple threads by schedul-

ing the VM running the ferret program on one core. When running Metronome on

the same single core, because of the CPU conflicting scenario the maximum through-

put achievable by l3fwd is around 8 Mpps. If we deploy Metronome on three cores

(one of these three cores is the same used by the VM), only one thread will be highly

impacted by the CPU-intensive task and therefore will unlikely act like a primary

thread. In this case l3fwd achieves no packet loss on a 10Gbps link, and the same

scenario happens if we schedule the same VM running ferret on two of the three

cores shared with Metronome. The next paragraph shows that also when all of the

three Metronome threads are (potentially) impacted by ferret, they can still for-

3We focused on a CPU-intensive task since it is less likely to release the CPU. We have also tried
Metronome with more memory-intensive PARSEC tasks such as canneal and found out that the
results are pretty similar.

Chap. 5 Experimental results 57

§5.6 Impact

ward packets at line rate, thanks to the reduced likelihood that all of them (when

requiring to be brought back to the runqueue after the sleep period) are impacted

simultaneously because of the decisions of the OS CPU-scheduler. These experiments

clearly show that running Metronome on multiple threads leads to improved robust-

ness against common CPU sharing scenarios and interference by other workloads.

Vacation period impact: In the Appendix, we show the same test performed in

Section 4.2.2, Figure 4.3, with the addition of ferret interfering Metronome.

Latency impact: Figure 5.9a shows the latency boxplots for Metronome with the

ferret interference (blue) and without it (orange). The impact of interference on

latency is that, once Metronome releases the CPU and consequently awakens, it will

wait for some time before being rescheduled since the VM is not preempted immedi-

ately by the OS. This phenomenon of course happens less frequently under high load,

as Metronome has more work to do and therefore is less likely to release the CPU,

while it is more likely under low load, where the increase in latency is indeed more

visible.

Co-existence with other tasks: we now demonstrate that Metronome’s sleep&wake

approach enables the CPU sharing of other tasks without major drawbacks, while

DPDK’s static, constant polling approach denies such possibilities. We first ran

ferret on one core, with a static DPDK polling l3fwd application on the same

core. Then, we scheduled ferret on three cores and the three Metronome threads

on the same cores. As Figure 5.9b shows, sharing the CPU with a static polling

task causes ferret to almost triple its duration, while Metronome’s multi-threading

and CPU sharing approach only causes a 10% increase. Moreover, standard DPDK’s

single core approach couldn’t keep up with the incoming load, achieving a maximum

of 7.31 Mpps, while Metronome achieved no packet loss even when all of its three

Chap. 5 Experimental results 58

§5.7 Vacation period interference

alone w/ ferret

static DPDK 14.88 7.34
Metronome 14.88 14.88

Table 5.2: Throughput (Mpps) for static DPDK and Metronome

10 5 1 0.5
Rate (Gbps)

20

40

60

80

L
at

en
cy

(µ
s)

alone interfered

(a) Metronome: latency boxplots

alo
ne

w/ sta
tic

DPDK
alo

ne

w/ M
etr

on
om

e
0

240

480

720

960

f
e
r
r
e
t

ex
ec

u
ti

on
ti

m
e

(s
) 1 core 3 cores

(b) ferret: execution time

Figure 5.9: Tests with Metronome running alone and interfered by ferret

cores were shared with a CPU intensive program such as ferret (see Table 5.2). We

underline that Metronome’s multi-threading strategy implies that the same workload

is shared between multiple threads, thus the more the cores, the less the work every

thread needs to perform and therefore the more they can co-exist with other tasks

without affecting performances, as this test shows.

5.7 Vacation period interference

We present here the results in which we replicate the experiment in Section 4.2.1,

Figure 4.3. The scenario here is always TL = TS = 50µs, with ferret competing

for all the cores. From the experimental results, it seems like when M cores are

Chap. 5 Experimental results 59

§5.8 Going multiqueue

0 20 40 60
Vacation period [7s]

0

0.005

0.01

0.015

0.02

D
en

si
ty

Experimental data
Theoretical PDF

(a) 2 cores

0 10 20 30 40 50
Vacation period [7s]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

D
en

si
ty

Experimental data
Theoretical PDF

(b) 3 cores

0 10 20 30 40 50
Vacation period [7s]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
en

si
ty

Experimental data
Theoretical PDF

(c) 5 cores

Figure 5.10: Vacation period PDF: analysis vs experiments, TS = TL. Metronome is
interfered by ferret

interfered, Metronome acts like the case of M-1 non-interfered threads. Figure 5.10a

is much likely to a Dirac delta function, while 5.10b can be seen as similar to a uniform

PDF. However, we believe the main takeaway from these tests, as already stated, is

that the gap with the non-interfered version gets minimal as the number of threads

increases (see Figure 5.10c), this further motivates our choice of using multiple threads

for improved robustness.

5.8 Going multiqueue

Our evaluation now focuses on the multiqueue case analyzed in Section 4.5: tests have

been conducted for both Metronome and static DPDK using Intel XL710 40Gbps

NICs. These devices are limited by a maximum processing rate of 37Mpps [44]. In

all tested environments, Metronome always reached the desired 37Mpps forwarding

throughput. Traffic is distributed equally among the Rx queues through RSS, while

in a later subsection we will discuss the unbalanced traffic case. We found out that

the main components to be tuned for achieving the best performances in Metronome

(assuming a fixed V̄ = 15µs) are the number of Rx queues, the CPU power governor

and the number of threads.

Chap. 5 Experimental results 60

§5.8 Going multiqueue

5.8.1 Tuning the number of queues

We test our l3fwd application using 2,3 and 4 Rx queues for the same 37Mpps

throughput. Results for CPU and power consumption are available in Figure 5.11. We

now focus on the performance power governor (Figures 5.11a,b,c), as we discuss the

impact of the ondemand power governor in the next paragraph. The ρ parameter and

the busy tries percentage are also shown (see Figure 5.12) in order to better explain the

results. As with 2 Rx queues every queue is experiencing high load traffic (˜18Mpps

each), most of the time the queues are busy (ρ = 0.7 with 2 threads) and the CPUs

are running at their maximum, so the main gain is in the CPU occupancy (150% with

2 threads, 156% with 8). While in the cases with many threads Metronome uses

more power than static DPDK (here represented with dotted lines), it does not make

much sense to use more than 4 threads to contend just two queues, as also the linear

increase in busy tries (blue-filled bars in Figure 5.12a) suggests. When using a larger

number of queues (3 or 4), the lower per-queue load permits Metronome to increase

its gain compared to static DPDK both in CPU and power (see Figure 5.11c). In

order to determine the number of queues to use, it is worth noticing that on one hand

with a larger number of queues, ρ decreases and, consequently, the number of busy

tries decreases, which makes the Metronome algorithm more efficient. On the other

hand, as the number of queues increases, so does the number of threads to deploy and

consequently, power consumption. We believe that ρ ∼ 0.5 is a good compromise,

which in our experiments is reached with 3 Rx queues.

5.8.2 Power governors matter

While in the previous paragraph we focused on the performance governor, we now

discuss the ondemand one, the difference between the two is explained in Section

Chap. 5 Experimental results 61

§5.8 Going multiqueue

5.4. Figure 5.11d shows the results with 2 Rx queues: the initial decrease in power

consumption is motivated by the fact that while with 2 threads, these can only be in

the primary state, when increasing the number of threads, they tend to be backup ones

(and therefore, to sleep for more time) because of the high percentage of busy tries

(see the red-filled bars in Figure 5.12a). This is in turn caused by the steep increase

of ρ with the number of threads: since the CPU cores can execute at slower rates,

threads will likely take more time to unload their Rx queues and therefore these will

be busy for longer periods. This phenomenon is still visible with 3 queues and slightly

with 4 queues. As the number of queues increases, the difference between the two

power governors in terms of queue occupation ρ and busy tries still remains significant

but also slightly decreases (see the subfigures in Figure 5.12). Overall, the ondemand

power governor permits to trade some extra CPU time for a better power efficiency:

also in this case the best advantages are visible with a larger number of queues. This

further demonstrates Metronome’s capability to adapt to a lower per-queue load.

5.8.3 Tuning the number of threads

After presenting Figure 5.12, we can now draw some implications about the number

of threads to be used in the multiqueue case. Our goal is to deploy a large enough

number of threads (at least as big as the number of Rx queues, see Section 4.5) without

incurring in too much busy tries (quantitatively, an upper bound of 10% of the tries),

assuming the use of the performance power governor. We can see from Figure 5.12

that this is approximately achieved when the number of cores doubles the number of

Rx queues. Therefore, we propose N ≤ M ≤ 2N as a reasonable choice and we use

this approach also in the later sections. In the supplementary material we show how

this approach scales well also in 100Gb link scenarios.

Chap. 5 Experimental results 62

§5.8 Going multiqueue

2 3 4 5 6 7 8
cores

0

100

200

C
P

U
(%

)

Metronome

0

10

20

30

40

P
ow

er
(W

)

(a) 2 queues - performance

3 4 5 6 7 8
cores

0

100

200

300

C
P

U
(%

)

Static CPU

0

10

20

30

40

P
ow

er
(W

)

(b) 3 queues - performance

4 5 6 7 8
cores

0

100

200

300

400

C
P

U
(%

)

Power

0

10

20

30

40

P
ow

er
(W

)

(c) 4 queues - performance

2 3 4 5 6 7 8
cores

0

100

200

C
P

U
(%

)

0

10

20

30

40

P
ow

er
(W

)

(d) 2 queues - ondemand

3 4 5 6 7 8
cores

0

100

200

300

C
P

U
(%

)

0

10

20

30

40

P
ow

er
(W

)

(e) 3 queues - ondemand

4 5 6 7 8
cores

0

100

200

300

400

C
P

U
(%

)

0

10

20

30

40

P
ow

er
(W

)

(f) 4 queues - ondemand

Figure 5.11: CPU and power for Metronome and static DPDK with different RX
queues and power governors

2 3 4 5 6 7 8
cores

0

25

50

75

100

B
u

sy
T

ri
es

(%
)

Busy Tries

0.00

0.25

0.50

0.75

1.00

ρ

(a) 2 queues

3 4 5 6 7 8
cores

0

25

50

75

100

B
u

sy
T

ri
es

(%
)

ρ on-demand

0.00

0.25

0.50

0.75

1.00

ρ

(b) 3 queues

4 5 6 7 8
cores

0

25

50

75

100

B
u

sy
T

ri
es

(%
)

performance

0.00

0.25

0.50

0.75

1.00

ρ

(c) 4 queues

Figure 5.12: Busy tries and ρ with different # of Rx queues

Chap. 5 Experimental results 63

§5.8 Going multiqueue

37 30 20 15 10 0
Rate (Mpps)

0

100

200

300

400

C
P

U
(%

)

Static Metronome

(a) CPU usage

37 30 20 15 10 0
Rate (Mpps)

0

10

20

30

P
ow

er
(W

)

Static Metronome

(b) Power

Figure 5.13: CPU and power consumption under different loads.

5.8.4 Scaling to the actual traffic

Figure 5.13a shows the CPU consumption for Metronome and DPDK under different

traffic rates, from 0 to line rate on an Intel XL710 (37Mpps). The test is done with

4 Rx queues with both Metronome and DPDK, and with M = 5 and V̄ = 15µs

for Metronome. Our approach saves more than half of static DPDK’s CPU cycles

while maintaining the same line-rate throughput, and improving even more at lower

rates. Also in terms of power consumption (see Figure 5.13b), Metronome provides

around 2-3W of advantage even when using a highly expensive power governor such

as performance.

5.8.5 Unbalanced traffic

We test Metronome’s multiqueue capabilities by continuously sending at line rate an

unbalanced pcap file. The file is composed by 1000 packets, 30% of the packets belongs

to the same UDP flow, while the other 70% is randomly generated and therefore

equally split among the queues. In the test we use 3 Rx queues (without losing

packets), so the most stressed queue processes around 53% of the total throughput,

Chap. 5 Experimental results 64

§5.8 Going multiqueue

Busy tries (%) Total tries ρ
Queue #1 1.94 5970660 0.3208
Queue #2 4.39 2625007 0.7269
Queue #3 2.02 5704167 0.3552

Table 5.3: Statistics for the unbalanced traffic case

while the other two queues are in charge of 23% each. Table 5.3 shows some meaningful

statistics for the test. Queue #2 is the most stressed. Therefore, it has the highest

busy tries percentage and also the highest queue occupation ρ. It is worth noticing

that, on a 3-minute test, queue #2 experienced less than half of the lock tries of

queues #1 and #3: this trend validates the assumption in Section 4.1, where a busy

queue tends to have only one primary thread at a time while a less occupied one is

more likely to have more threads in the primary state simultaneously, and therefore,

more tries.

5.8.6 Thread-to-queue binding policy

We show that our random binding policy of a thread to a certain queue leads to

increased resiliency with respect to the static binding one. We use a setup with 6

threads and 3 Rx queues: in the static binding scenario, each Rx queue is assigned

to two threads in an exclusive way, while in the other case each thread chooses its

next queue randomly. We interfered two threads contending the same Rx queue with

ferret, in this case the system’s throughput decreased to 27.64 Mpps, while the

random policy reached line-rate throughput as always. With this test we show that

Metronome’s dynamic and random behavior permits increased resiliency when some

of the threads are interfered, as in this case we only need (with M Rx queues) any

of the M threads to be not interfered in order to timely process packets, while in the

static binding case we need for every Rx queue, at least one if its threads to be not

Chap. 5 Experimental results 65

§5.9 Tested applications

8 queues
16 cores

12 queues
24 cores

16 queues
32 cores

0

20

40

60

80

100

B
u

sy
tr

ie
s

(%
)

Busy tries

0.0

0.2

0.4

0.6

0.8

1.0

ρ

ρ

Figure 5.14: Busy tries and ρ in a many-queues scenario.

interfered.

5.8.7 Many-queues scaling

We run some preliminary tests to see if the desired goals mentioned in Section V.F

(ρ ∼ 0.5, busy tries ≤ 10%) are achievable also in a many-queues scenario. For

this reason, we deployed Metronome using Cloudlab’s Utah c6525 servers [45], which

permit us to use Mellanox ConnectX-5 100Gbps NICs. We run Metronome with

the M = 2N parameter setting, with N=8,12,16 Rx queues. As Figure 5.14 shows,

Metronome can maintain the desired ρ ∼ 0.5, while the busy tries value decreases as

the number of queues grows and the cores/queues ratio remains constant. This trend

was already visible in Figure 14 of the article.

5.9 Tested applications

To further assess the flexibility and the wide breadth of Metronome, we show three

DPDK applications that we successfully adapted to the Metronome architecture,

namely two DPDK sample applications as a L3 forwarder [37] and an IPsec Secu-

rity Gateway [46], as well as FloWatcher-DPDK [47], a high-speed software traffic

Chap. 5 Experimental results 66

§5.9 Tested applications

monitor. While these applications work at packet level, we underline that Metronome

could be also integrated in frameworks communicating with upper layer applications,

like mTCP [48], a TCP stack exploiting DPDK: Metronome could be integrated on

the Rx side of mTCP by replacing the static polling of the NICs with our adaptive

algorithm.

L3 forwarder The l3fwd sample application acts as a software L3 forwarder either

through the longest prefix matching (LPM) mechanism or the exact match (EM) one.

We chose the LPM approach as it is the most computation-expensive one between

the two. We have used the l3fwd application to test Metronome’s performances in

this Chapter exhaustively.

IPsec Security Gateway This application acts as an IPsec end tunnel for both

inbound and outbound network traffic. It takes advantage of the NIC offloading

capabilities for cryptographic operations, while the application itself performs encap-

sulation and decapsulation. Our tests perform encryption of the incoming packets

through the AES-CBC 128-bit algorithm as packets are later sent to the unprotected

port. The DPDK sample application achieves a maximum outbound throughput of

5.61 Mpps with 64B packets in static polling mode: once we adapted the application

to Metronome, we found out that we were able to reach the exact same throughput.

In fact, one of Metronome’s threads was always processing packets and therefore never

releasing the trylock shared with the other threads, this is clearly visible in Figure

5.15a. For lower rates, Metronome clearly outperforms the static approach as rates

decrease.

FloWatcher-DPDK FloWatcher is a DPDK-based traffic monitor application pro-

viding tunable and fine-grained statistics, both at packet and per-flow level. FloWatcher

can either act through a run to completion model or a pipeline one: we chose the for-

Chap. 5 Experimental results 67

§5.9 Tested applications

5.61 3 1 0.5 0.1
Rate (Mpps)

0

50

100

C
P

U
u

sa
ge

(%
)

Static Metronome

(a) IPsec Security Gateway

14.88 10 5 1 0.5
Rate (Mpps)

0

50

100

C
P

U
u

sa
ge

(%
)

Static Metronome

(b) FloWatcher-DPDK

Figure 5.15: CPU usage - other applications (single RX queue)

mer since the receiving thread is also calculating the statistics, therefore providing

a more challenging scenario for Metronome. We find out that Metronome provides

the same performances that the static DPDK approach does in terms of zero packet

loss and correct statistics calculation, while reaching major improvements in CPU

utilization. In particular, Figure 5.15b shows a 50% gain even under line rate traffic

and almost a 5x gain with 0.5 Mpps traffic.

Chap. 5 Experimental results 68

Part II

Non-blocking, single-queue driver

69

Introduction

In this part, the author proposes a non-blocking mechanism for network drivers, which

is the second part of this PhD dissertation. The main goal of this part is to design a

network stack explicitly suited for a predictable, tail-bounded latency and scaling to

multi-cores, thus solving Problems 3 and 4 in Section 1.2.

This approach permits the adoption of a scale-up mechanism for network stacks

as opposed to the current scale-out policy (as shown in Section 2.2). By allowing

more threads to process the same Rx queue in parallel, the approach enables a work-

conserving property for network stacks.

We imagine two reasons why this approach has never been explored before:

1. A shared queue implies the possibility of breaking per-flow consistency, with

packets in the same flow ending up (simultaneously) in different threads. It also

introduces the case of packet reordering in flow-based streams;

2. Rearchitecting the stack’s queue policy requires the network driver’s modifica-

tion. As also said in 2.1.1, users typically know very little about how drivers

work.

From a pragmatic perspective, the software logic that queuing systems rely on

admits a single execution flow at any time for managing the data structure imple-

menting the queue. In particular, even if Metronome (Part I) has been shown that

70

multiple threads can process the packets incoming from a single queue, only one of

these threads is enabled to carry out the actual operations at any time, thanks to a

queue-locking mechanism.

The author believes the aforementioned motivations and the practical way to pro-

ceed with queue management—in particular, the reliance on locking and critical sec-

tions for the operations on a single queue—can be overcome for the following reasons:

1. A new generation of concurrent algorithms for handling shared data structures

(e.g., [49, 50, 51, 52, 53]), which do not rely on locking mechanisms, have gained

significant interest for both scalability and performance reasons. The networking

community hardly knows these algorithms, and their baseline design criteria are

currently not exploited at the level of queue management drivers;

2. Most of the data-center flows are restricted to a handful of packets [54], there-

fore minimizing both the possibility and the effects of packet reordering when

adopting concurrent (e.g. simultaneous) management of the queue by multiple-

threads;

3. Recently, the networking community has shown some interest in network drivers

[19, 55, 56]. This has permitted the community to dive deeper into how a driver

operates under the hood and how the side of actual software execution flows

could further optimize it.

The author builds on these three observations and presents the first implementation

(to the best of its knowledge) of a work-conserving, parallel network driver, where

threads use no locking mechanism for managing the data structure, implementing a

single queue. Therefore, the driver follows a scale-up policy for network stacks, which

71

is fully orthogonal—and mixable with—the widely adopted scale-out policy.

This part is divided into the following Chapters:

• Chapter 6 presents an algorithm fully supportable with any standard ISA, like

the one offered by x86 processors, where multiple-concurrent threads can at the

same time process different (sets of) packets incoming from the same queue. In

this solution, thread coordination—for avoiding inconsistencies—purely occurs

via the exploitation of Read-Modify-Write (RMW) machine instructions. The

algorithm has been implemented on top of x86/Linux machine and has been

integrated within the DPDK packet processing framework [9];

• Chapter 7 presents a comprehensive assessment of the capabilities that are per-

mitted by this solution, compared to the classical literature scenario where every

single queue is instead managed by an individual execution flow (a single thread)

at any time. The scale-up mechanism shows significant improvements both in

mean and tail latency, as well as minimal packet reordering as the packet size

increases.

This part partially includes figures and verbatim copies of the text from the paper

presenting the non-blocking driver.

72

Chapter 6

Architecture

6.1 Motivation

As already explained in Section 2.2, in a modern network stack each queue is processed

by only one thread, and the threads cannot simultaneously work on the same queue.

We can therefore model the network stack as a N ×M/G/1 queuing system, where N

threads have a separate queue each. It is well known from basic queuing theory (see

the following subsection) that an M/G/N system would bring significant advantages

in tail latency; in fact, a single queue shared among the N threads enables global

visibility of the workload to be processed by all the threads, therefore implying a

work-conserving policy for network stacks. This is particularly beneficial in the case

of head-of-the-line blocking, variations in the service time, and also in the case of

temporal queue imbalances, where for short periods of time, one queue can be much

populated while others may find themselves empty.

6.1.1 Simulation results

To evaluate the effectiveness of this approach from a theoretical perspective, we con-

ducted several queuing theory simulations using the Matlab Simevents package,while

varying the number of servers (4 and 8).

Chap. 6 Architecture 73

§6.1 Motivation

The results, presented in Figure 6.1, display both mean and 99p latency. Figure

6.1 shows results for a Markovian service time. For each plot, the blue line shows

our approach, while the green one shows the current state-of-the-art. Our findings

clearly demonstrate that using multiple threads aligns with queuing theory

and significantly improves both mean and tail latency.

0.2 0.4 0.6 0.8 1
ρ

0

10

20

30

40

50

M
ea

n
T
s

(s
)

1 x M/M/4

4 x M/M/1

(a) Mean latency -
4 cores

0.2 0.4 0.6 0.8 1
ρ

20

40

60

80

99
°

p
er

ce
n
ti

le
T
s

(s
) 1 x M/M/4

4 x M/M/1

(b) 99p latency -
4 cores

0.2 0.4 0.6 0.8 1
ρ

5

10

15

20

25

M
ea

n
T
s

(s
)

1 x M/M/8

8 x M/M/1

(c) Mean latency -
8 cores

0.2 0.4 0.6 0.8 1
ρ

10

20

30

40

50

60

99
°

p
er

ce
n
ti

le
T
s

(s
) 1 x M/M/8

8 x M/M/1

(d) 99p latency -
8 cores

Figure 6.1: Mean and 99p latency simulation results - Markovian service time

We now repeat the same test with Deterministic service times, a scenario highly

unlikely to happen in modern computer architectures because of the many sources

of variability. Still, this utopian scenario represents the case with fewer benefits for

the proposed approach. Results are shown in Figure 6.2; it is interesting to underline

that our approach still brings benefits at a very high load.

0.2 0.4 0.6 0.8 1
ρ

0

10

20

30

40

50

M
ea

n
T
s

(s
)

1 x M/D/4

4 x M/D/1

(a) Mean latency -
4 cores

0.2 0.4 0.6 0.8 1
ρ

0

10

20

30

40

50

99
°

p
er

ce
n
ti

le
T
s

(s
) 1 x M/D/4

4 x M/D/1

(b) 99p latency -
4 cores

0.2 0.4 0.6 0.8 1
ρ

5

10

15

20

25

M
ea

n
T
s

(s
)

1 x M/D/8

8 x M/D/1

(c) Mean latency -
8 cores

0.2 0.4 0.6 0.8 1
ρ

0

10

20

30

40

50

99
°

p
er

ce
n
ti

le
T
s

(s
) 1 x M/D/8

8 x M/D/1

(d) 99p latency -
8 cores

Figure 6.2: Mean and 99p latency simulation results - Deterministic service time

In a real scenario, the core point stands in how to build the multithreaded concur-

rent queuing system in an effective manner—for example, via the well-suited exploita-

Chap. 6 Architecture 74

§6.2 Core Concepts

tion of machine instructions in the RMW class. Challenges and constraints related to

these aspects are discussed in Section 6.3.

6.2 Core Concepts

This work’s main idea is to design a non-blocking algorithm that can enable multi-

threaded, simultaneous processing of the same Rx queue—hence avoiding any locking

of the queue. From the explanation of a driver’s receive routine in Section 2.1.1, it is

clear that the receive flow of a network driver is anything but tailored to a concurrent

execution model: in fact, the NIC-shared data structures lack the support for simul-

taneous operations in order to access them in parallel without causing inconsistencies

(and therefore, malfunctions) in the buffer state. This causes the whole Rx function

to be a critical section.

This work proposes a different approach based on the core concepts that drive the

development of modern concurrent algorithms [53, 50, 57, 58, 51, 52, 59]. In these

solutions, the notion of atomicity (hence correctness) of the operations by a thread

is no longer linked to the concept of critical section. Rather, threads are coordinated

by the reliance on atomic machine instructions belonging to the Read-Modify-Write

(RMW) class. These instructions can access a memory location and update it—for

example if the original value matches a target value selected by the thread.

Some of these instructions can fail in the update operation—e.g. if the memory

location does not (or no longer) match the target value that has been selected. Hence,

the failure makes the thread know that the shared data structure has changed its

state—e.g. because of operations occurring by a concurrent thread. Threads can

therefore fail/win a race in constant time, and in case of a win, the thread has earned

the right to perform a specific operation, which is immediately visible to the other

Chap. 6 Architecture 75

§6.3 Challenges and Constraints

threads (i.e. they fail) so that race conditions are avoided. In case of a fail, a thread

has not modified the shared state and hasn’t caused any delay or inconsistency for

the concurrent workers. As a result of this design, the threads are totally decoupled

(a part from some corner cases occurring in our network driver, which

are explained in Section 6.5.1), enabling total independence (they do not block

each other) and resilience against slowdowns (e.g., de-scheduling, cache misses, and

interrupts).

The direct consequence is the possibility of a scale-up mechanism in current net-

work functions and end-hosts, opposite to the current scale-out policy (Figure 2.2).

6.3 Challenges and Constraints

Let us go back to Listing 2.1.1 in Section 2.1.1 to understand the portions of code

where race conditions among concurrently operating threads can occur:

1. in lines 15-17, a concurrent copy and replace of the same descriptor can happen

from more threads at the same time, causing inconsistencies in the shared buffer.

2. at line 23, the TAIL write is dependent on the timing of the thread’s operations.

There is also a fundamental question to be investigated: for how the problem has been

presented until now, the reader might think that concurrent algorithms for accessing

a shared ring buffer have already been implemented in software and, therefore, may

not see any significant contribution. The main difference with respect to the existing

algorithms is that in the latter case, both producers and consumers are written by

the user in customized software, while in this case, we can only write the consumer’s

portion of code without having any possibility to modify the producer’s behavior,

which is the NIC. Consequentially, there is also the need to make this algorithm

Chap. 6 Architecture 76

§6.4 The Algorithm

compatible with what the NIC is expecting, namely a single execution flow coherently

processing the receive queue. This is both a requirement for running this driver with

unmodified NICs and a limitation in how the threads can behave since the NIC must

not notice that multiple threads are simultaneously processing the same queue.

6.4 The Algorithm

6.4.1 Handling thread-level parallelism

Let’s see how we can overcome the above-mentioned conflicts through Listing 6.1:

1. Split the work to be done: the set of the available (in the sense of containing

a packet) descriptors must be partitioned disjointedly among the threads, so

that they don’t overlap. This is achieved through the following operations:

first, a scan of the Rx queue is done by reading the DD bit (lines 12-19) in

order to understand how many descriptors have been filled by the NIC. At

this point, the thread tries to obtain that specific batch of descriptors through

an atomic Compare-And-Swap (CAS) machine instruction of the RMW class

(line 21). In case of a win, the queue->rx index global variable has been

instantaneously updated, and therefore no other thread can obtain a conflicting

set of descriptors1. In lines 23-30, the thread can copy the descriptors to its

own buffer and replace them with new, empty ones. This is the actual portion

of code we can speed up in this execution model.

2. Synchronize on who should update the TAIL register: we avoid concur-

rent TAIL writes through a trylock (lines 35 and 42). We underline that even

1Each conflicting thread has two scenarios: either it sees the new value of queue->rx index when
getting a copy at line 8 or if they still have the old one, they will fail the race for modifying it at
line 21.

Chap. 6 Architecture 77

§6.4 The Algorithm

if the trylock() call fails, there are no negative consequences for the thread in

terms of waiting or delay.

6.4.2 Handling transparency to the NIC

This above-mentioned NIC compatibility problem calls for a transparency mechanism,

which is a way for making threads simultaneously process the same queue while giving

the illusion to the NIC that it is interfacing with only one thread. More specifically,

with transparency it is meant that the set of descriptors one can re-assign to the NIC

must be contiguous; in this way, the NIC will see the re-assigned descriptors as a

unique batch released by a single thread. As an example: say thread A has granted

descriptor 1 and then thread B has granted descriptor 2, but thread A is being slowed

down for some reason while B has ended its work. In this case, one can’t just write 2

to the TAIL register as this would also mean freeing descriptor 1, which is not done

yet. At this point, thread B should wait for thread A for an unknown amount of time,

and it has already been stated in Section 6.2 that no waiting periods are allowed. So

the only thing B can do to exit the Rx function and process the packet it has received

in the meantime is to write to some shared data structure that descriptor 2 can be

freed, otherwise, this information would be lost. When thread A eventually ends its

routine, it will first write to the same data structure that descriptor 1 is done. Then

if there is a contiguous set of descriptors (starting from the current tail onwards) that

can be re-assigned to the NIC, it will understand this from reading this shared data

structure and will eventually move the TAIL. There could still be multiple threads

trying to read this shared data structure and concurrently trying to update the TAIL.

Still, the idea is that a thread that sees a continuous batch of descriptors (either by

”filling a gap” as thread A did in the previous example or by creating a brand new

Chap. 6 Architecture 78

§6.5 Implementation

one) can give them back to the NIC by updating the TAIL.

6.5 Implementation

In the deployment of this approach, we have found many practical situations that

must be taken into account; these are presented here:

1. Global transaction ID: A unique ID is needed that tells where the process of

assigning descriptors to cores has arrived and that can be updated through the

CAS operation at line 21 in Listing 6.1; how to choose it?

Unfortunately, the naive choice of using the Rx queue descriptor index queue

-> rx index at line 8 cannot be done. The reason behind this is that the ID,

since it ranges from 0 to RING SIZE-1, is susceptible to the ABA problem2;

thread A may read index 1023, be descheduled and after some other thread has

done a complete round of processing the queue (so the ID is now 1023 again),

thread A may wake up again and successfully do a CAS operation, even if it

saw an ancient state of the queue! The only solution is, therefore, to use a

constantly increasing ID in order to make impossible this periodic wrapping of

the index (e.g., using an unsigned 32-bit integer). The assumption here is that

the queue size is always a power of 2 to map the ID to the queue positions

correctly, but this already happens in network drivers, so it is not limiting the

possible Rx queue size in any way. When overflow occurs, the variable will start

again from 0, and this does not cause any inconvenience. For mapping the ID

to the descriptor offset in the queue, it just need to be divided by the queue

2the ABA problem occurs when one thread reads the value A from a shared memory location,
some other thread modifies the value from A to B and back to A, and then the first thread observes
the value as still being A. The problem is named after the sequence of operations involved (A→B→A).
This can lead to unexpected results and incorrect behavior if the first thread misses the intermediate
state change.

Chap. 6 Architecture 79

§6.5 Implementation

Listing 6.1: A simplified receive function of a parallel network driver

1 #define wrap_ring(index) (uint16_t) (index % RING_SIZE)

2 uint16_t lock = 0;

3

4 uint32_t ixgbe_rx_batch(struct device* dev , uint16_t queue_id , struct

pkt_buf* bufs []) {

5 //Get the queue struct for device dev and queue queue_id

6 struct ixgbe_rx_queue* queue = get_queue(dev , queue_id);

7 struct pkt_buf* buffer = queue ->buffer;

8 uint16_t rx_index = __atomic_load(queue ->rx_index); // descriptor index

we checked in the last run of this function

9 //Local copy of the rx_index counter

10 uint16_t rx_index_local = rx_index;

11 uint16_t last_rx_index , i;

12 for (i = 0; i < BATCH_SIZE; i++) {

13 if (!(buffer[rx_index_local] && DD_BIT))

14 // Descriptor has not been filled by the NIC yet , exit the loop

15 break;

16 else

17 //Move on to the next descriptor

18 rx_index_local = wrap_ring(rx_index_local + 1);

19 }

20 //try to win the race for the batch of descriptors [rx_index ...

rx_index_local]

21 if (__compare_and_swap (&queue ->rx_index , rx_index , rx_index_local)) {

22 //race is won , we can copy the descriptors

23 rx_index_local = rx_index;

24 new_bufs = mempool_desc_bulk_alloc ();

25 for (uint16_t j = 0; j < i; j++) {

26 bufs[j] = buffer[rx_index_local];

27 // Replace the descriptor with a new one from the mempool

28 buffer[rx_index_local] = new_bufs[j];

29 last_rx_index = rx_index_local;

30 rx_index_local = wrap_ring(rx_index_local +1);

31 }

32 //write that the [rx_index ... rx_index_local] is successfully copied

33 write_batch_is_done(rx_index , rx_index_local);

34 }

35 if (trylock (&lock)) {

36 //Get how many contiguous descriptors there are to be freed , starting

from the TAIL

37 uint16_t descs_to_free = read_batch_done(queue ->tail);

38 //Set the descriptors ’ bits back to 0

39 write_batch_to_zero(queue ->tail , wrap_ring(queue ->tail +

descs_to_free))

40 //Free the processed descriptors back to the NIC

41 set_register(TAIL , dev , queue_id , wrap_ring(queue ->tail +

descs_to_free));

42 release_lock (&lock);

43 }

44 }

Chap. 6 Architecture 80

§6.5 Implementation

size and get the rest of the division. The result of the division tells another

piece of information, namely the epoch in which the queue is (See Table 6.1).

The epoch means how many times the system has done a complete round in

processing that queue, so from 0 to SIZE-1. On the conceptual level, choosing

an ever-growing ID allows one to distinguish between the different epochs the

queue may be into, avoiding the previous problem.

2. How to store in a shared data structure which descriptor has been

processed (by any thread) and is ready to be assigned to the NIC?: It

was chosen to use a bitmask with one bit per descriptor called READ DONE: this

permits to do the following thing: when all descriptors belonging to a certain

iteration have been processed, the thread knows which bits it has to write, and

this likely translates into an atomic write to a single variable: in line 33 at List-

ing 6.1, the thread writes the batch starting from rx index to rx index local.

Bits need to be set not only to 1 at the end of the processing but also to be set

back to 0 when a thread grants responsibility for freeing certain descriptors to

the NIC (line 40); otherwise, this would cause conflicting views.

6.5.1 Corner cases

The main corner case that may cause the system to stall is preventing the NIC from

loading incoming packets to the shared buffer, i.e., the buffer is full. More specifically,

say thread A has granted possession of descriptor 2 and gets descheduled for an

indefinite period of time. In this situation, other threads can process a full round

of descriptors (from 3 to 1). Still, then they will always find the queue full of new

descriptors ready to be re-assigned to the NIC but unable to be returned to the

Chap. 6 Architecture 81

§6.5 Implementation

ID Descriptor Index Epoch
0 0

0
1 1
2 2
... ...

1023 1023
1024 0

1
1025 1
1026 2
... ...

2047 1023
2048 0

2
2049 1
2050 2
... ...

3071 1023

Table 6.1: Table with the global transaction ID (left), the referred descriptor index
(centre) and the consequent epoch (right)

NIC because they lack descriptor 2 in order to form a contiguous batch of descriptors

starting from the TAIL. In the meantime, the NIC sees the buffer as full since no thread

has had the possibility to move the TAIL. Thus, threads will have to wait for A to

resume its execution and mark descriptor 2 as ready to be assigned back to the NIC in

the READ DONE shared variable. This is not a limitation strictly caused by the proposed

approach but instead by the way in which the NIC-to-CPU communication is designed

and explained in Section 2.1.1. We underline that, with respect to the opposed scale-

out policy, this approach still permits to perform a full round of operations on the

shared buffer, while in the state-of-the-art scale-out policy if one thread is delayed

then the whole receive queue(s) assigned to it cannot be processed in any way.

Chap. 6 Architecture 82

§6.5 Implementation

6.5.2 Practical details

The new network driver routine has been implemented in DPDK v21.11. The contri-

bution is not restricted to DPDK but could be extended to other frameworks like the

Linux kernel, XDP, or RDMA completion queues. We chose DPDK since it allowed us

to write C code in user space and, therefore, ease in deploying the code and debugging

it.

We focused on the ixgbe, i40e and ice Intel drivers. The choice of such drivers is

motivated by the fact that the ixgbe driver is well-documented [27] and well-explained

by Emmerich et al. in [19] through their simplified ixy driver; i40e and ice are also

pretty similar to ixgbe in terms of how the receive function works. Other vendors

tend not to show their drivers’ routines and specifications through datasheets publicly;

we encourage them to make these pieces of information public to increase researchers’

interest and knowledge in network drivers.

DPDK drivers usually exploit vectorized ASM instructions in the RX routine in order

to optimize performance further by performing the same operation on multiple packets

in parallel. These instructions are quite complex to understand 3 firstly because they

exploit specific CPU architecture-dependent data structures and APIs. Furthermore,

these function routines are not documented by the DPDK developers nor in [19]; in

fact, Emmerich et al. limit their contribution to scalar receive functions. For this

reason, the vectorized receive function versions were disabled in order to focus only

on the standard ones. Still, using vectorized instructions could be of interest since it

may show how performances evolve when a better-optimized routine is used.

Regarding the actual code writing, synchronization of the threads is achieved through

the atomic [60] and sync [61] gcc built-in primitives. atomic functions avoid re-

3see the ixgbe recv raw pkts vec function as an example

Chap. 6 Architecture 83

https://elixir.bootlin.com/dpdk/latest/source/drivers/net/ixgbe/ixgbe_rxtx_vec_sse.c#L333

§6.5 Implementation

ordering from out-of-order execution, while the sync bool compare and swap func-

tion performs as a test-and-set primitive: it allows to atomically control if a specific

memory location matches a particular value and if the two match, to update the

location to a new value.

Chap. 6 Architecture 84

Chapter 7

Experimental results

In this Chapter, the author presents the evaluation tests for our multithreaded driver.

Section 7.1 focuses on how multiple threads scale when bound to the same queue,

Section 7.2 shows the results for mean and 99p latency while Section 7.3 quantifies

the packet reordering percentage for different traffic sizes. Tests are executed on a

server equipped with Intel Silver Xeon 4110 CPU cores clocked at 2.1GHz and Intel

XL710 40Gbps NICs. CPU cores are isolated, and power limitators like C-states,

P-states are disabled. The sender uses traffic generators like MoonGen [38] or Trex,

depending on the test scenario. MoonGen fails to saturate 40Gbps NICs with 64B

packets, but it still provides essential features like hardware rate control with Intel

X520 NICs (which is not available with Intel XL710) in order to properly quantify

the reordering rate. This is why, depending on the scenario, we vary both the traffic

generator and the NIC used.

The tested applications are examples included the DPDK framework, namely:

• l3fwd [37], which acts as a Layer-3 longest-prefix-matching forwarder. The

application retrieves packets from the NIC in batch, executes a routing table

lookup for each packet, and forwards it through the relevant NIC.

• ipsec-gw gateway [46], which is a more expensive task since it performs more

Chap. 7 Experimental results 85

§7.1 Scalability tests

complex operations; after retrieving a batch of packets, it controls for every

packet which rules to apply based on its flow (forward, drop, encryption/de-

cryption), performs the operations and sends the packet if required. In our

setup, all packets are encrypted in software without NIC HW acceleration and

then forwarded.

7.1 Scalability tests

A first metric worth being measured is how our driver scales in throughput when we

add more threads to the same queue. We show the results in Table 7.1 for l3fwd

and 7.2 for ipsec-gw; SOTA stands for the State Of The Art while MT stands for

Multithreaded Driver. We show the throughput in Mpps for 64B UDP traffic when

executing the tasks on a NIC-local NUMA node and a remote one, as well as the

performance improvement in percentage compared to the state of the art. In the case

of Table 7.1, the NIC maximum throughput is around 37 Mpps as stated in the Intel

XL710 datasheet [44], so a hardware limitation biases this value.

mode same NUMA different NUMA
Tput (Mpps) % Tput (Mpps) %

SOTA 16.43 100 11.54 100
MT 1 core 17.68 107.61 11.87 102.86
MT 2 cores 26.4 160.68 19.62 170.02
MT 3 cores 35.35 215.16 28.09 243.41
MT 4 cores 37.66 229.21 33.69 291.94

Table 7.1: Scalability executing L3FWD task

A first observation is that our algorithm, also in the 1:1 thread-to-queue compari-

son, provides some benefits in throughput: the reason behind this is the use of a bulk

allocation mechanism from the memory pool (Line 24 in Listing 6.1) which permits to

call the allocation only once per Rx routine invocation. A second observation is that

Chap. 7 Experimental results 86

§7.2 Latency

mode same NUMA different NUMA
Tput (Mpps) % Tput (Mpps) %

SOTA 5.04 100 2.74 100
MT 1 core 5.07 100.6 2.81 102.55
MT 2 cores 8.18 162.3 4.94 180.29
MT 3 cores 10.9 216.27 6.92 252.55
MT 4 cores 15.3 303.57 8.92 325.52

Table 7.2: Scalability executing IPSec task

our algorithm shows better scalability improvements in the remote NUMA scenario;

this is a direct consequence of the increased memory access time latencies.

7.2 Latency

We now focus on presenting the end-to-end latency benefits of our approach, motivated

by the simulation results in Section 6.1. Our approach (Scale-up) and the state of the

art (Scale-out) are compared with different numbers of cores running the l3fwd task.

We use the Trex traffic generator with minimum-size 64B UDP traffic, as this is the

most challenging scenario for DPDK applications in terms of incoming packets rate.

7.2.1 Mean Latency

Figure 7.1 and 7.2 show the mean latency while executing the l3fwd task with 4 and

8 cores, respectively, and a variable load, from 0 to the maximum rate sustainable

(37Mpps). We can see a similarity between the theoretical plots and the experimen-

tal results, as our approach maintains a flat mean latency until the system reaches a

saturation point at 37Mpps. Also, we can see that the current scale-out mechanism

maintains a flat mean latency until a certain threshold is reached. After that thresh-

old, the value rapidly spikes to a saturation value. As from the simulation results,

we would have expected the mean latency to increase up to saturation slightly, this

Chap. 7 Experimental results 87

§7.2 Latency

likely does not happen both because of the highly optimized DPDK threads and also

because of the little service time needed to perform level-3 forwarding. Instead, our

scale-up approach has the benefit of bringing further the saturation point up to the

theoretical maximum achievable from the system, as also queuing theory and simu-

lation suggest. Indeed, in this case, the latency spike at 37Mpps is not caused by

software but rather by the NIC hardware limitations, so with different hardware, the

saturation point could possibly be pushed forward (especially in the 4 cores case) and

show more significant improvements.

5 10 15 20 25 30 35 37
Rate (Mpps)

50

100

150

L
at

en
cy

(µ
s)

Scale up

Scale out

Figure 7.1: L3FWD mean latency - 4 cores

5 10 15 20 25 30 35 37
Rate (Mpps)

50

100

150

200

L
at

en
cy

(µ
s)

Scale up

Scale out

Figure 7.2: L3FWD mean latency - 8 cores

Chap. 7 Experimental results 88

§7.3 UDP reordering

7.2.2 Tail Latency

We now focus on rates where our scale-up policy achieves better mean performance

than the classical scale-out mechanism1. Figure 7.3 shows the CDF latency distribu-

tions at 35Mpps with 4 cores, while Figure 7.4 shows the same lines with 8 cores and

a 30Mpps traffic. The two figures clearly show that our approach brings benefits not

only in terms of mean latency but, most of all, latency predictability.

0 50 100 150 200 250
Latency (µs)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Scale up

Scale out

Figure 7.3: L3FWD latencies CDF distribution - 35Mpps

7.3 UDP reordering

These tests focus on how the multithreaded driver impacts connection-less streams

like UDP ones, as they are a good way of showing a worst-case scenario for the

reordering metrics. Tests for reordering with UDP traffic are performed with different-

sizes packets on a 10Gb link. The test focuses on sending a unique flow of 100k

1It is possible that further improvements in tail latency may be shown: the reason behind this is
the limited resolution of the TRex traffic generator [62]. At the moment, TRex is the only framework
capable of saturating a 40Gbps NIC while permitting end-to-end latency measurements at the same
time. Unfortunately, TRex does not use the same precise NIC hardware timestamp features as
MoonGen [38] does. Moreover, the latency distribution is shown in a histogram mode with bins,
so there is no way to get the exact latency values for a precise histogram unless the TRex code is
modified. The author had a conversation with the authors of TRex about this [63] and believes this
limitation could be overcome either by modifying TRex or by building a new traffic generator from
scratch.

Chap. 7 Experimental results 89

§7.4 TCP

0 50 100 150 200 250
Latency (µs)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
Scale up

Scale out

Figure 7.4: L3FWD latencies CDF distribution - 30Mpps

sequenced packets, making them reordered by the MT driver through a L3 forwarder,

and checking the order of the arrived packets at the receiver side. Since it is a unique

flow, we do not include results for the scale-out policy, as the reordering percentage

would be zero regardless of the rate or packet size. Results are shown in Figure 7.5

with 4 cores pinned to the same Rx queue and in Figure 7.6 with 8 cores. The plots

focus on the percentage of packets reordered, according to RFC 4737 [64]. It can be

clearly seen that high levels of packet reordering are achieved only in the presence of

both high traffic rates and minimal packet sizes. In fact, as the packet sizes increase,

the reordering percentage rapidly drops and becomes insignificant for typical packet

sizes like TCP ones.

7.4 TCP

We now investigate how a l3fwd router equipped with our multithreaded driver can

impact real-world use cases using TCP connections to exchange data. More specifi-

cally, the router is connected to a client and a server and forwards traffic between the

two. The router is deployed in two different scenarios, scale-out (like the state of the

art) and scale-up (our solution). Tests are executed with 1, 2 or 4 threads per NIC:

Chap. 7 Experimental results 90

§7.4 TCP

1 2 3 4 5 6 7 8 9 10
Rate (Gbps)

0

10

20

30

40

R
eo

rd
er

ed
p

k
ts

(%
) 64B

128B

256B

512B

1024B

1500B

Figure 7.5: percentage of reordered packets for UDP traffic of different sizes with 4
cores

1 2 3 4 5 6 7 8 9 10
Rate (Gbps)

0

10

20

30

40

50

R
eo

rd
er

ed
p

k
ts

(%
) 64B

128B

256B

512B

1024B

1500B

Figure 7.6: percentage of reordered packets for UDP traffic of different sizes with 8
cores

as explained, in the scale-out option each thread has its own Rx queue, while in the

scale-up option one queue is shared among all the threads. Our goal is to investigate,

in different test scenarios, whether our approach can improve the end-to-end latency

or can cause performance degradation because of the retransmissions caused by re-

ordering. We used the standard Linux TCP CUBIC congestion control.

We focus on three different test scenarios: one massive flow (High-Performance-

Computing-style), many medium flows (ordinary client connections), and many small

flows (data-center RPC-style connections). The first case is not compared to the scale-

Chap. 7 Experimental results 91

§7.4 TCP

mode FCT (s) Retransmissions
1GB 10GB 1GB 10GB

COREC 1 core 0.91625 9.13267 6.375 906.25
COREC 2 cores 0.91853 9.2238 626 4073.88
COREC 4 cores 0.92067 9.35045 1071.25 5042

Table 7.3: Latency and # retransmissions for huge flows

out policy since a unique flow would involve only one Rx queue and thread because

of RSS; therefore, there is no chance to distribute the load among cores.

Latencies are calculated by retrieving the OS timestamp right before the connection

setup (connect syscall) and right after the connection teardown (close syscall).

Single Huge Flow: We test our approach with two different flow sizes, namely

1GB and 10GB. This is expected to be the worst case for our COREC driver since

any packet reordering occurs within the single flow being delivered, and thus directly

impacts the TCP transmission control protocol. Results are shown in Table 7.3. As

expected, our approach causes performance degradation in the Flow Completion Time

(FCT), owing to the increase in the TCP retransmissions, which are a direct conse-

quence of packet reordering and are also exacerbated when the whole bandwidth of the

10Gbps link is assigned to a unique flow. Still, performance degradation is marginal,

with an increase in the flow completion time of 2.3% in the case of 10GB flow when

moving from 1 thread to 4 threads, and even less than 1% in the 1GB experiment.

Medium and small flows: Tests are executed with a 100 KB and 10KB payload

per connection. We first comment on the results for the 10KB connections shown in

Figure 7.8a for 64 flows and Figure 7.8b for 128 flows. We can clearly see that our

approach brings significant benefits both in mean and tail latency by exploiting its

work-conserving capabilities. On the other side, the scale-out case does not scale so

Chap. 7 Experimental results 92

§7.4 TCP

well to multiple cores, confirming the theory of poor many-core scaling described in

[17].

While in this case we can expect that reordering is very unlikely because of the short

payload, we now try to increase the payload to 100KB, as this case focuses on a more

significant load of ∼70 packets per flow. Results are presented in Figures 7.7a and

7.7b, and they clearly show that our driver still improves the FCT, although in a less

evident way.

1 2 4
threads

5

10

15

F
C

T
(µ

s)

Baseline DPDK
(Scale out)

Concurrent driver
(Scale up)

(a) 64 flows

1 2 4
threads

0

10

20

30

F
C

T
(µ

s)
Baseline DPDK
(Scale out)

Concurrent driver
(Scale up)

(b) 128 flows

Figure 7.7: Flow Completion Time with 100KB payload

1 2 4
threads

2

4

F
C

T
(µ

s)

Baseline DPDK
(Scale out)

Concurrent driver
(Scale up)

(a) 64 flows

1 2 4
threads

0

5

10

F
C

T
(µ

s)

Baseline DPDK
(Scale out)

Concurrent driver
(Scale up)

(b) 128 flows

Figure 7.8: Flow Completion Time with 10KB payload

Chap. 7 Experimental results 93

§7.4 TCP

One-packet flows: It is interesting to also test our driver with one-packet flows (1KB

payload). This can be considered as a best case benchmark for TCP traffic, since, in

this case, there is no possibility of re-sequencing the packets at the receiver since only

one packet containing TCP payload is sent. Furthermore, these flows are particularly

interesting since a significant portion of Data Center flows, especially RPC flows, are

restricted to a single packet [54, 65]. Also, in this case, we test the FCT time for 64

and 128 TCP parallel flows, and results are shown in Figures 7.9a and 7.9b. We can

clearly see the benefits of our multithreaded driver as the number of flows increases.

1 2 4
threads

1

2

F
C

T
(µ

s)

Baseline DPDK
(Scale out)

Concurrent driver
(Scale up)

(a) 64 flows

1 2 4
threads

0

2

4

F
C

T
(µ

s)
Baseline DPDK
(Scale out)

Concurrent driver
(Scale up)

(b) 128 flows

Figure 7.9: Flow Completion Time with 1KB payload

Chap. 7 Experimental results 94

Part III

Related Work

95

Chapter 8

Related Work

8.1 Optimized networking software

8.1.1 Latency

In the last years, a set of works were published with the common goal of such solutions

is the efficient schedule of tasks across different cores, explicitly targeting interference

mitigation and predictable, low latency for user applications. These works focus on

different components in order to increase performances:

• a CPU scheduler: Shenango [66] permits dynamic fast core reallocation be-

tween latency-sensitive applications and batch ones by detecting spikes in queu-

ing delay, where the latter can exploit the unused CPU cycles of the former.

Caladan [67] is a similar work with respect to Shenango but uses more signals

for detecting interference and uses a dedicated kernel module for fast realloca-

tion. The work in [68] builds on Caladan to investigate different reallocation

policies and shows improvements in CPU efficiency.

• user-level thread-management system: Arachne [69] is a core-aware user-

level thread implementation that minimizes cache misses and achieves low-

latency high-throughput performance for short-lived threads. The paper in [70]

Chap. 8 Related Work 96

§8.1 Optimized networking software

presents a user-level M:N threading runtime that enables thread-per-session pro-

gramming for long-running communication applications. The runtime features

efficient load balancing and user-level I/O blocking.

• a performance-isolation framework: [71] PerfIso is a performance isolation

framework used by the Microsoft Bing search engine to colocate batch jobs with

production latency-sensitive services on over 90,000 servers. By doing so, idle

resources can be used to run batch jobs without compromising the stringent

tail-latency requirements of the latency-sensitive services. The experimental

evaluation conducted in a production environment shows that PerfIso increases

average CPU utilization without impacting tail latency.;

• a specific OS: ZygOS [72] is an operative system optimized for high-throughput,

low-latency scheduling of fine-grain networked tasks on multicore servers. Zy-

gOS achieves high performance for tail latency service-level objectives, using a

work-conserving scheduler, shared-memory data structures, multi-queue NICs,

and inter-processor interrupts to rebalance work across cores. Shinjuku [73] is

an operating system with fast preemption at the microsecond scale enabled by

hardware virtualization, enabling centralized scheduling policies for short ser-

vice time requests. IX [74] is designed for high I/O performance with strong

protection. It uses hardware virtualization to separate control and dataplane,

with a zero-copy API, dedicated hardware threads, and networking queues to

optimize for bandwidth and latency.

All of the presented works try to minimize tail latency by focusing on the applica-

tion level; instead, this dissertation dives deep into one of the datapath components,

namely the network driver. Moreover, my proposal may cause, as an advantage, a

Chap. 8 Related Work 97

§8.1 Optimized networking software

better use of the CPU caches because of the reduced memory footprint of one queue

compared to many queues, and could be further coupled with one of the approaches

in Section 8.1.2.

8.1.2 Cache performances

As networking moves towards the Terabit Ethernet, a smart and timely use of cache

hierarchies becomes fundamental [75, 76]. Direct cache Access (DCA) permits the

NIC to place DMAed buffers directly in the L3 cache so that software can find a

warm cache, with Intel’s DDIO [77] being the most popular solution [78]. However,

several works showed that DDIO is not a panacea at all: Cai et al. [79] ”observe

that it suffers from high cache miss rates (49%) even for a single flow”, while [80,

81] present optimized DDIO versions in terms of latency. In the context of more NFs

sharing the same L3 cache, [82] proposes a limitation on the number of descriptors for

avoiding the leaky DMA problem, where LLC cache contention can cause the eviction

of packets which still have to be processed by the system. The work in [83] shows

how delaying and reordering packets can improve cache locality and, therefore, per-

formance.

8.1.3 Power consumption

One of the main shortcomings of DPDK is the excessive usage of resources (CPU cycles

and energy), caused by the busy-wait approach used by threads to check the state of

NICs and Rx queues. Intel tried in [84] to address the energy consumption issue via

a gradual decrease of the CPU clock frequency under low traffic for a commonly used

Chap. 8 Related Work 98

§8.1 Optimized networking software

application such as the layer-3 forwarder. A similar approach is used in [85], with the

addition of an analytical model exploited to choose the appropriate CPU frequency.

Along this line, [4] proposes a power-proportional software-router.

However, while the downgrading of the clock frequency reduces power consumption

[4] without noticeably affecting performance, these solutions do not take into account

another crucial aspect, namely the actual usage of CPU. In fact, downgrading the

clock frequency of a CPU core fully dedicated to a thread operating in busy-wait

(namely, continuous polling) mode still implies 100% utilization. Hence, the CPU core

is anyhow unusable for other tasks. Moreover, downgrading the clock frequency of

CPUs is not feasible in cloud environments since (i) they are shared between different

processes and customers and (ii) providers would like them to be fully utilized in

order to reach peak capacity on their servers [1]. On the contrary, the author’s

proposal, Metronome, bypasses these limitations since it does not rely on any explicit

manipulation of the frequency and/or power state of the CPUs. Instead, it controls

at fine-grained the timeline of CPU (and energy) usage by DPDK threads—hence

the name Metronome—which are no longer required to operate in busy-wait style.

Such control is based on an analytical model that allows taking runtime decisions

depending on packet workload variations.

8.1.4 Other optimizations

Recent works propose low-level code optimizations, either at run time [86] or through

a tailored binary file [87]. It is essential to underline that, while the NIC and the CPU

exchange packets, the PCI can possibly become a bottleneck in the communication

process [88].

Chap. 8 Related Work 99

§8.2 Network drivers

8.2 Network drivers

It has been quite hard for the author to understand what happens under the hood of

a network driver. The reason behind this is that these components are usually seen

as black boxes by researchers, mainly because:

• they are usually developed in the industry with poor documentation [55];

• modern frameworks abstract the details to the programmer for simplicity rea-

sons, thus simply exposing a function to receive/transmit packets.

However, in recent years, some works have tried to explain and improve what happens

under the hood of a network driver. ixy [19] is a simple implementation of the ixgbe

network driver, with simplicity and educational goals, and has been widely studied by

the author to get a primary idea of how drivers work. TinyNF [55] simplifies the packet

handling for the same driver, showing increased performances and more simplicity at

the cost of some flexibility. The work by Emmerich et al. [56] proposes writing

network drivers in higher-level languages than standard C/C++ implementations to

ensure memory safety, reduce bugs and, more broadly, exploit the unique features of

each different language. CleanQ [89] is a reusable formalization of a driver’s descriptor

ring with security and portability motivations.

8.2.1 Modern optimizations

DMA (Direct Memory Access) is a technique used by network drivers to improve

data transfer between the NIC and the operating system. DMA allows the NIC to

access the system’s memory directly, without the need for intervention by the CPU.

This technique can reduce the CPU overhead and improve performance by allowing

the NIC to move data directly to or from memory. In essence, DMA allows the NIC

Chap. 8 Related Work 100

§8.3 Non-blocking algorithms

to act as a co-processor, handling data transfers independently of the CPU.

IOMMU (Input/Output Memory Management Unit) is another technique used by

network drivers to improve data transfer between the NIC and the operating system.

IOMMU is a hardware component that allows the system to map virtual addresses

to physical addresses. This enables the NIC to access memory without the risk of ac-

cessing data outside its allocated memory space. This technique is particularly useful

in virtualized environments where multiple virtual machines are running on a single

physical server.

8.3 Non-blocking algorithms

As a notable example, Read-Copy-Update (RCU) [90] is used in many readers, few

writers situations and is widely adopted also in the Linux Kernel [91]. Read-Log-

Update [49] is a novel version of RCU designed with the goal of also enabling con-

current writes. The work by Harris [53] proposes a non-blocking implementation of

a linked list by exploiting the compare-and-swap primitive. NBBS [50] is a novel

implementation of a buddy system based on read-modify-write (RMW) primitives.

Anonymous Readers Counting (ARC) [57] exploits RMW instructions to enable a

vast number of concurrent readers in multi-word atomic registers. [58] exploits these

non-blocking approaches to design a Parallel Discrete Event Simulation system. Sim-

ilar approaches have also been used to increase performances in binary search trees,

either through lock-free RMW instructions [51, 52] or transactional memory [59].

Chap. 8 Related Work 101

Part IV

Concluding Remarks

102

Chapter 9

Conclusions

In this Dissertation, we explored the new challenges and requirements brought out

by the recent advantage in NIC speeds, with a particular focus on data centers. In-

deed, the stagnation in CPU performance improvements has caused a shift towards

specifically-designed network stacks and frameworks, like DPDK. The deployment of

such frameworks is particularly needed for typical data center applications, which call

for high throughput and low latency. Also, the sustainability theme regarding data

center consumption is a tedious problem and will become more important in the up-

coming years, and it indeed requires a tradeoff between power and performance.

This Dissertation has proposed the design and implementation of two different strate-

gies in order to address the aforementioned challenges:

• Metronome for CPU-proportional, cloud-resilient network frameworks;

• A non-blocking, parallel network driver to meet the demands for scalability and

low latency.

In the first strategy, Metronome has the goal of replacing the continuous and CPU-

consuming DPDK polling with a sleep&wake, load-adaptive, intermittent packet re-

trieval mode. Metronome’s viability has been evaluated by integrating it into three

Chap. 9 Conclusions 103

different typical DPDK applications and by showing its significant improvements pri-

marily in terms of CPU utilization (and, partially, also in terms of power consump-

tion), and therefore its ability to release precious CPU cycles to business applications.

In the future, deploying Metronome in multi-NICs scenarios with per-NUMA node

thread pools could be considered as a further step. The author also stresses that such

gains are traded off with an extra latency toll, which can be taken into account and

configured using the tuning knobs provided by this approach, especially when (and

if) considering the usage of Metronome with time-critical applications.

In the second strategy, the design of a non-blocking, parallel network driver has been

motivated both by the native beneficial properties of scale-up systems and by the cu-

riosity about applying techniques from other contexts in the networking environment.

The challenges presented in the designed algorithm required not only low-overhead

threads coordination but also transparency and compatibility with existing NICs. The

adoption of the non-blocking, parallel network driver has shown significant improve-

ments in terms of mean latency and tail latency. These advantages could be even

more considerable whenever this approach is also tested on hundred-gigabit NICs,

where more considerable degrees of scalability are expected.

In the future, there may be a possibility for a fusion of the Metronome architecture

with the non-blocking driver. Indeed, this contribution would not be trivial as it

would require a deep re-architecture of the Metronome adaptive model, posing the

critical question of how the changes in the queuing model impact Metronome’s adap-

tive capabilities.

Also, these contributions could be ported to different contexts, like the Linux Kernel

or RDMA. As better explained in Section 1.3.1, this porting may not be straight-

forward and therefore requires a deep engineering effort. Moreover, the non-blocking

Chap. 9 Conclusions 104

driver could be implemented in more NIC models, like the Mellanox/NVIDIA ones,

whether these vendors will release their datasheets publicly along with comprehensive

network drivers documentation.

The author hopes that the combination of the works presented in this Dissertation

can make a contribution in paving the way for a new generation of frameworks and

algorithms, which should provide most of the characteristics proposed in this Disser-

tation, like scalability, CPU-proportionality, power-saving, resource sharing, low-level

coordination, dynamic scaling, and predictable latency.

Chap. 9 Conclusions 105

Acknowledgements

This Dissertation is the result of years of hard work, dedication, and passion in the

SDN-NFV Laboratory in Tor Vergata. This work has been made possible through the

incredible effort, vision, and guidance of my supervisors, Prof. Giuseppe Bianchi and

Prof. Francesco Quaglia. Among the many things I learned from them, I can say that

they taught me to have a critical view of research, focusing not on the achievements

(publications, awards) but rather on the techniques and approaches used. In other

words, research is a journey without knowing the destination, so one should simply

enjoy the journey, enriching it with new ideas and experiences.

Giuseppe is the man who first introduced me to the research world and gave me the

chance to prove my skills; I will always be grateful to him for giving me this opportu-

nity. He inspires me every day and pushes me to overcome my limits, raising the bar

each time. I firmly believe Giuseppe is the best role model that a new generation of

brilliant, young researchers could ask for.

Francesco managed to push me each time I had doubts and struggled to find meaning

in my work. His help was fundamental in finding critical aspects of the approaches

followed in the networking community, and proposing meaningful solutions coming

from his background in parallel and high-performance computing.

A fundamental contribution to my career and also to this Dissertation has been made

through the help of Prof. Salvatore Pontarelli. Sharing the lab with him was a true

Chap. 9 Conclusions 106

privilege, and his everyday supervision has been extremely helpful in my growth.

Giacomo Belocchi was my main colleague for the past three years; our day-to-day ac-

tivity went far beyond what I could expect, from bug-solving to brainstorming about

possible research directions. Most of all, he is a true friend who was able to share with

me his sincere passions and doubts. Giacomo is the smartest and most passionate

guy I’ve ever met in this field, and I’m sure he has a bright future ahead of him.

I also want to thank my other colleagues and friends from the Topini group: Daniela,

Marco, Alessandro, Angelo, Aniello, Emanuele, Luca, Ludovico, Marco, Valerio: I

always went to lab knowing that it was a place full of joy and that is because of these

lovely people.

My three months at MSR Cambridge were far beyond what I could imagine from an

internship. A huge “thank you” goes to Sergey Legtchenko, Paolo Costa, the whole

Silica team, and all the MSR Residents. I had the chance not only to work on amaz-

ing, real-life projects but, most of all, to meet lovely and caring people from all over

the world, and I will always keep this experience in my heart.

Proseguirò ora in italiano per i ringraziamenti personali.

Grazie ad Alessandra, persona speciale ed anima buona, che più di tutti mi è stata

accanto. Qualsiasi parola non renderebbe bene cosa siamo.

Grazie ai miei genitori Cristina e Fabio, ed a mio fratello Alessandro. Credo fer-

mamente che la famiglia ci influenzi profondamente nella nostra crescita: i valori,

l’educazione e tutti quei sistemi complessi che regolano il nostro stare al mondo. Voi

siete il meglio che la vita potesse darmi.

Grazie ai miei amici Burini, famiglia e porto sicuro dove tornare sempre.

Grazie a mio nonno Enzo, ingegnere da una vita e che fin da piccolo ha stimolato la

Chap. 9 Conclusions 107

mia curiosità, insegnandomi a porre le giuste domande. È proprio vero che la mela

non cade lontana dall’albero.

Auguro a chiunque legga questa tesi di sentirsi vivo mentre segue le proprie passioni,

cos̀ı come è capitato a me in questo percorso.

Beauty in the struggle, ugliness in the success

Chap. 9 Conclusions 108

Bibliography

[1] Daniel Firestone et al. “Azure accelerated networking: SmartNICs in the public
cloud”. In: USENIX NSDI 2018.

[2] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. “Large-scale cluster management at Google with Borg”.
In: Proceedings of the Tenth European Conference on Computer Systems. 2015,
pp. 1–17.

[3] John L Hennessy and David A Patterson. “A new golden age for computer
architecture”. In: Commun. of the ACM 62.2 (2019), pp. 48–60.

[4] Luca Niccolini, Gianluca Iannaccone, Sylvia Ratnasamy, Jaideep Chandrashekar,
and Luigi Rizzo. “Building a power-proportional software router”. In: USENIX
ATC 2012.

[5] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. “The Dat-
acenter as a Computer: Designing Warehouse-Scale Machines, Third Edition”.
In: 2018. Chap. 1.6.5.

[6] NVIDIA BlueField-3 Datasheet. url: https://www.nvidia.com/content/
dam / en - zz / Solutions / Data - Center / documents / datasheet - nvidia -

bluefield-3-dpu.pdf (visited on 11/17/2021).

[7] Ethernet Roadmap 2022. url: https://ethernetalliance.org/technology/
ethernet-roadmap/ (visited on 01/31/2023).

[8] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, et al.
“Jupiter rising: A decade of clos topologies and centralized control in google’s
datacenter network”. In: ACM SIGCOMM computer communication review 45.4
(2015), pp. 183–197.

[9] DPDK. Linux Foundation. url: https://www.dpdk.org/ (visited on 05/25/2020).

[10] Jeffrey Dean and Luiz André Barroso. “The tail at scale”. In: Communications
of the ACM 56.2 (2013), pp. 74–80.

[11] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and Steven D Gribble. “Tales of the
tail: Hardware, os, and application-level sources of tail latency”. In: Proceedings
of the ACM Symposium on Cloud Computing. 2014, pp. 1–14.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://ethernetalliance.org/technology/ethernet-roadmap/
https://ethernetalliance.org/technology/ethernet-roadmap/
https://www.dpdk.org/

[12] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-
han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. “ProjecToR: Agile Reconfigurable Data
Center Interconnect”. In: Proceedings of the 2016 ACM SIGCOMM Conference.
2016, pp. 216–229.

[13] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
“Inside the social network’s (datacenter) network”. In: Proceedings of the 2015
ACM SIGCOMM Conference.

[14] Theophilus Benson, Aditya Akella, and David A Maltz. “Network traffic char-
acteristics of data centers in the wild”. In: ACM IMC 2010.

[15] Laxmana Rao Battula. DPDK (Data Plane Development Kit) for Linux VMs
now generally available. Microsoft Azure, Sept. 21, 2018. url: https://azure.
microsoft.com/en-us/blog/dpdk-data-plane-development-kit-for-

linux-vms-now-generally-available/ (visited on 05/25/2020).

[16] Jeff Barr. Elastic Network Adapter – High Performance Network Interface for
Amazon EC2. Amazon Web Services, June 28, 2016. url: https : / / aws .

amazon.com/it/blogs/aws/elastic-network-adapter-high-performance-

network-interface-for-amazon-ec2/ (visited on 05/25/2020).

[17] Hossein Golestani, Amirhossein Mirhosseini, and Thomas F Wenisch. “Software
data planes: You can’t always spin to win”. In: Proceedings of the ACM Sym-
posium on Cloud Computing. 2019, pp. 337–350.

[18] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel Raumer, and
Georg Carle. “Comparison of frameworks for high-performance packet IO”. In:
ACM/IEEE ANCS 2015.

[19] Paul Emmerich, Maximilian Pudelko, Simon Bauer, Stefan Huber, Thomas
Zwickl, and Georg Carle. “User space network drivers”. In: 2019 ACM/IEEE
Symposium on Architectures for Networking and Communications Systems (ANCS).
IEEE. 2019, pp. 1–12.

[20] Marco Faltelli, Giacomo Belocchi, Francesco Quaglia, Salvatore Pontarelli, and
Giuseppe Bianchi. “Metronome: Adaptive and Precise Intermittent Packet Re-
trieval in DPDK”. In: Proceedings of the 16th International Conference on
Emerging Networking EXperiments and Technologies. CoNEXT ’20. Barcelona,
Spain: ACM, 2020, pp. 406–420. doi: 10.1145/3386367.3432730.

[21] Marco Faltelli, Giacomo Belocchi, Francesco Quaglia, Salvatore Pontarelli, and
Giuseppe Bianchi. “Metronome: Adaptive and Precise Intermittent Packet Re-
trieval in DPDK”. In: IEEE/ACM Transactions on Networking (2022), pp. 1–
15. doi: 10.1109/TNET.2022.3208799.

[22] Marco Faltelli, Giacomo Belocchi, Giuseppe Bianchi, and Francesco Quaglia. A
non-blocking, parallel driver for low and predictable latency. Tech. rep. Consorzio
Nazionale Interuniversitario per le Telecomunicazioni - CNIT, 2022.

https://azure.microsoft.com/en-us/blog/dpdk-data-plane-development-kit-for-linux-vms-now-generally-available/
https://azure.microsoft.com/en-us/blog/dpdk-data-plane-development-kit-for-linux-vms-now-generally-available/
https://azure.microsoft.com/en-us/blog/dpdk-data-plane-development-kit-for-linux-vms-now-generally-available/
https://aws.amazon.com/it/blogs/aws/elastic-network-adapter-high-performance-network-interface-for-amazon-ec2/
https://aws.amazon.com/it/blogs/aws/elastic-network-adapter-high-performance-network-interface-for-amazon-ec2/
https://aws.amazon.com/it/blogs/aws/elastic-network-adapter-high-performance-network-interface-for-amazon-ec2/
https://doi.org/10.1145/3386367.3432730
https://doi.org/10.1109/TNET.2022.3208799

[23] Valerio Bruschi, Marco Faltelli, Angelo Tulumello, Salvatore Pontarelli, Francesco
Quaglia, and Giuseppe Bianchi. “Offloading Online MapReduce tasks with State-
ful Programmable Data Planes”. In: IEEE NETPROC 2020, pp. 17–22. doi:
10.1109/ICIN48450.2020.9059417.

[24] Giuseppe Bianchi, Marco Faltelli, and Valerio Bruschi. “Back to the Future:
Towards Hardware ”Netputing” Architectures”. In: IEEE MedComNet 2020,
pp. 1–4. doi: 10.1109/MedComNet49392.2020.9191475.

[25] Jeffrey C. Mogul and K. K. Ramakrishnan. “Eliminating Receive Livelock in
an Interrupt-Driven Kernel”. In: ACM Transactions on Computer Systems 15.3
(Aug. 1997), pp. 217–252.

[26] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux device
drivers. O’Reilly Media, Inc., 2005. Chap. 17: Networking drivers.

[27] Intel® 82599 10 GbE Controller Datasheet Rev. 3.4. Section 7.1.9. Intel, Nov.
2019. url: https : / / www . intel . com / content / www / us / en / embedded /

products/networking/82599-10-gbe-controller-datasheet.html.

[28] Luigi Rizzo. “netmap: A Novel Framework for Fast Packet I/O”. In: 2012
USENIX Annual Technical Conference (USENIX ATC 12). Boston, MA, 2012,
pp. 101–112.

[29] N. Bonelli, S. Giordano, and G. Procissi. “Network Traffic Processing With
PFQ”. In: IEEE Journal on Selected Areas in Communications 34.6 (2016),
pp. 1819–1833.

[30] PF RING ZC (Zero Copy). ntop, 2014. url: https://www.ntop.org/products/
packet-capture/pf_ring/pf_ring-zc-zero-copy/ (visited on 05/13/2020).

[31] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John Fastabend,
Tom Herbert, David Ahern, and David Miller. “The eXpress Data Path: Fast
programmable packet processing in the operating system kernel”. In: Proceed-
ings of the 14th international conference on emerging networking experiments
and technologies. 2018, pp. 54–66.

[32] eBPF. https://ebpf.io/.

[33] Maurice Herlihy and J. Eliot B. Moss. “Transactional Memory: Architectural
Support for Lock-Free Data Structures”. In: SIGARCH Comput. Archit. News
21.2 (May 1993), pp. 289–300. issn: 0163-5964. doi: 10.1145/173682.165164.
url: https://doi.org/10.1145/173682.165164.

[34] Matt Mills. Transactional Memory: What It Is and Integration Via Intel TSX.
July 9, 2021. url: https://itigic.com/transactional-memory-what-it-
is-and-integration-via-intel-tsx/.

[35] Metronome: adaptive packet retrieval in DPDK. url: %7Bhttps://github.
com/marcofaltelli/Metronome%7D (visited on 10/31/2020).

https://doi.org/10.1109/ICIN48450.2020.9059417
https://doi.org/10.1109/MedComNet49392.2020.9191475
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://ebpf.io/
https://doi.org/10.1145/173682.165164
https://doi.org/10.1145/173682.165164
https://itigic.com/transactional-memory-what-it-is-and-integration-via-intel-tsx/
https://itigic.com/transactional-memory-what-it-is-and-integration-via-intel-tsx/
%7Bhttps://github.com/marcofaltelli/Metronome%7D
%7Bhttps://github.com/marcofaltelli/Metronome%7D

[36] Muthurajan Jayakumar.Data Plane Development Kit (DPDK)—Multicores and
Control Plane Synchronization. Intel, Sept. 10, 2018. url: https://software.
intel.com/content/www/us/en/develop/articles/dpdk-data-plane-

multicores-and-control-plane-synchronization.html (visited on 06/08/2020).

[37] Sample Applications User Guides - L3 Forwarding Sample Application. url:
https://doc.dpdk.org/guides-19.11/sample_app_ug/l3_forward.html

(visited on 06/28/2020).

[38] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. “MoonGen: A Scriptable High-Speed Packet Generator”. In: ACM
IMC 2015.

[39] Tianzhu Zhang, Leonardo Linguaglossa, Massimo Gallo, Paolo Giaccone, Luigi
Iannone, and James Roberts. “Comparing the Performance of State-of-the-Art
Software Switches for NFV”. In: ACM CoNEXT 2019.

[40] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen, and Zhonghong
Ou. “RAPL in Action: Experiences in Using RAPL for Power Measurements”.
In: ACM Transactions on Modeling and Performance Evaluation of Computing
Systems 3.2 (2018).

[41] CPU frequency and voltage scaling code in the Linux kernel. url: https://
www.kernel.org/doc/Documentation/cpu-freq/governors.txt (visited on
04/01/2021).

[42] Achieving line rate with xdp fwd using Intel X520 #53. url: https://github.
com/xdp-project/xdp-project/issues/53 (visited on 10/19/2020).

[43] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD thesis. Prince-
ton University, Jan. 2011.

[44] Intel® Ethernet Controller X710/XXV710/XL710 Specification Update, Sec-
tion 2, Clarification #13. url: https://www.intel.com/content/dam/
www/public/us/en/documents/specification- updates/xl710- 10- 40-

controller-spec-update.pdf (visited on 04/01/2021).

[45] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, et al.
“The Design and Operation of CloudLab”. In: 2019 USENIX annual technical
conference (USENIX ATC 19). 2019, pp. 1–14.

[46] Sample Applications User Guides - IPsec Security Gateway Sample Application.
url: https://doc.dpdk.org/guides-19.11/sample_app_ug/ipsec_secgw.
html (visited on 06/28/2020).

[47] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, and D. Rossi. “FloWatcher-
DPDK: Lightweight Line-Rate Flow-Level Monitoring in Software”. In: IEEE
Transactions on Network and Service Management 16.3 (2019), pp. 1143–1156.

https://software.intel.com/content/www/us/en/develop/articles/dpdk-data-plane-multicores-and-control-plane-synchronization.html
https://software.intel.com/content/www/us/en/develop/articles/dpdk-data-plane-multicores-and-control-plane-synchronization.html
https://software.intel.com/content/www/us/en/develop/articles/dpdk-data-plane-multicores-and-control-plane-synchronization.html
https://doc.dpdk.org/guides-19.11/sample_app_ug/l3_forward.html
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://github.com/xdp-project/xdp-project/issues/53
https://github.com/xdp-project/xdp-project/issues/53
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xl710-10-40-controller-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xl710-10-40-controller-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xl710-10-40-controller-spec-update.pdf
https://doc.dpdk.org/guides-19.11/sample_app_ug/ipsec_secgw.html
https://doc.dpdk.org/guides-19.11/sample_app_ug/ipsec_secgw.html

[48] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sungh-
wan Ihm, Dongsu Han, and KyoungSoo Park. “mtcp: a highly scalable user-level
TCP stack for multicore systems”. In: USENIX NSDI 2014.

[49] Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier. “Read-log-
update: a lightweight synchronization mechanism for concurrent programming”.
In: Proceedings of the 25th Symposium on Operating Systems Principles. 2015,
pp. 168–183.

[50] Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and Francesco Quaglia.
“NBBS: A non-blocking buddy system for multi-core machines”. In: IEEE Trans-
actions on Computers (2021).

[51] Aravind Natarajan and Neeraj Mittal. “Fast concurrent lock-free binary search
trees”. In: Proceedings of the 19th ACM SIGPLAN symposium on Principles
and practice of parallel programming. 2014, pp. 317–328.

[52] Bapi Chatterjee, Nhan Nguyen, and Philippas Tsigas. “Efficient lock-free binary
search trees”. In: Proceedings of the 2014 ACM symposium on Principles of
distributed computing. 2014, pp. 322–331.

[53] Timothy L Harris. “A pragmatic implementation of non-blocking linked-lists”.
In: International Symposium on Distributed Computing. Springer. 2001, pp. 300–
314.

[54] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout.
“Homa: A receiver-driven low-latency transport protocol using network priori-
ties”. In: Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. 2018, pp. 221–235.

[55] Solal Pirelli and George Candea. “A Simpler and Faster NIC Driver Model
for Network Functions”. In: 14th USENIX Symposium on Operating Systems
Design and Implementation OSDI 20). 2020, pp. 225–241.

[56] Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Egger, Esaú Garćıa Sánchez-
Torija, Thomas Günzel, Sebastian di Luzio, Alexandru Obada, Maximilian Stadlmeier,
Sebastian Voit, and Georg Carle. “The Case for Writing Network Drivers in
High-Level Programming Languages”. In: 2019 ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems (ANCS). 2019, pp. 1–
13. doi: 10.1109/ANCS.2019.8901892.

[57] Mauro Ianni, Alessandro Pellegrini, and Francesco Quaglia. “Anonymous Read-
ers Counting: A Wait-Free Multi-Word Atomic Register Algorithm for Scal-
able Data Sharing on Multi-Core Machines”. In: IEEE Transactions on Parallel
and Distributed Systems 30.2 (2019), pp. 286–299. doi: 10.1109/TPDS.2018.
2865932.

https://doi.org/10.1109/ANCS.2019.8901892
https://doi.org/10.1109/TPDS.2018.2865932
https://doi.org/10.1109/TPDS.2018.2865932

[58] Mauro Ianni, Romolo Marotta, Davide Cingolani, Alessandro Pellegrini, and
Francesco Quaglia. “The Ultimate Share-Everything PDES System”. In: Pro-
ceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Dis-
crete Simulation. SIGSIM-PADS ’18. Rome, Italy: Association for Computing
Machinery, 2018, pp. 73–84. isbn: 9781450350921. doi: 10.1145/3200921.
3200931. url: https://doi.org/10.1145/3200921.3200931.

[59] Nathan G Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. “A prac-
tical concurrent binary search tree”. In: ACM Sigplan Notices 45.5 (2010),
pp. 257–268.

[60] Built-in Functions for Memory Model Aware Atomic Operations. GCC, the
GNU Compiler Collection. url: https://gcc.gnu.org/onlinedocs/gcc/
_005f_005fatomic-Builtins.html#g_t_005f_005fatomic-Builtins (vis-
ited on 08/16/2022).

[61] Legacy sync Built-in Functions for Atomic Memory Access. GCC, the GNU
Compiler Collection. url: https://gcc.gnu.org/onlinedocs/gcc/_005f_
005fsync-Builtins.html#g_t_005f_005fsync-Builtins (visited on 08/16/2022).

[62] TRex. url: trex-tgn.cisco.com (visited on 10/12/2022).

[63] Trex per-packet latency. url: https://groups.google.com/g/trex-tgn/c/
9ZEvJyx_lOQ/m/iFo8T0uIAwAJ (visited on 10/24/2022).

[64] Al Morton, Gomathi Ramachandran, Stanislav Shalunov, Len Ciavattone, and
Jerry Perser. Packet Reordering Metrics. RFC 4737. Nov. 2006. doi: 10.17487/
RFC4737. url: https://www.rfc-editor.org/info/rfc4737.

[65] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delim-
itrou. “Dagger: Efficient and Fast RPCs in Cloud Microservices with near-
Memory Reconfigurable NICs”. In: Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems. ASPLOS ’21. Virtual, USA: Association for Computing Machinery,
2021, pp. 36–51. isbn: 9781450383172. doi: 10.1145/3445814.3446696. url:
https://doi.org/10.1145/3445814.3446696.

[66] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Bal-
akrishnan. “Shenango: Achieving High CPU Efficiency for Latency-sensitive
Datacenter Workloads”. In: USENIX NSDI 2019).

[67] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. “Caladan:
Mitigating Interference at Microsecond Timescales”. In: 14th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, Nov. 2020, pp. 281–297. isbn: 978-1-939133-19-9. url: https :
//www.usenix.org/conference/osdi20/presentation/fried.

https://doi.org/10.1145/3200921.3200931
https://doi.org/10.1145/3200921.3200931
https://doi.org/10.1145/3200921.3200931
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html#g_t_005f_005fatomic-Builtins
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html#g_t_005f_005fatomic-Builtins
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fsync-Builtins.html#g_t_005f_005fsync-Builtins
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fsync-Builtins.html#g_t_005f_005fsync-Builtins
trex-tgn.cisco.com
https://groups.google.com/g/trex-tgn/c/9ZEvJyx_lOQ/m/iFo8T0uIAwAJ
https://groups.google.com/g/trex-tgn/c/9ZEvJyx_lOQ/m/iFo8T0uIAwAJ
https://doi.org/10.17487/RFC4737
https://doi.org/10.17487/RFC4737
https://www.rfc-editor.org/info/rfc4737
https://doi.org/10.1145/3445814.3446696
https://doi.org/10.1145/3445814.3446696
https://www.usenix.org/conference/osdi20/presentation/fried
https://www.usenix.org/conference/osdi20/presentation/fried

[68] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy. “Effi-
cient Scheduling Policies for Microsecond-Scale Tasks”. In: 19th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 22). Renton,
WA: USENIX Association, Apr. 2022, pp. 1–18. isbn: 978-1-939133-27-4. url:
https://www.usenix.org/conference/nsdi22/presentation/mcclure.

[69] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout.
“Arachne:{Core-Aware} Thread Management”. In: 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18). 2018, pp. 145–
160.

[70] Martin Karsten and Saman Barghi. “User-Level Threading: Have Your Cake
and Eat It Too”. In: Proc. ACM Meas. Anal. Comput. Syst. 4.1 (June 2020).
doi: 10.1145/3379483. url: https://doi.org/10.1145/3379483.

[71] Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj Syamala,
Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex Chen, Jack Zhang,
and Junhua Wang. “PerfIso: Performance Isolation for Commercial Latency-
Sensitive Services”. In: 2018 USENIX Annual Technical Conference (USENIX
ATC 18). Boston, MA: USENIX Association, July 2018, pp. 519–532. isbn:
978-1-939133-01-4. url: https : / / www . usenix . org / conference / atc18 /
presentation/iorgulescu.

[72] George Prekas, Marios Kogias, and Edouard Bugnion. “ZygOS: Achieving Low
Tail Latency for Microsecond-Scale Networked Tasks”. In: ACM SOSP 2017.

[73] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David
Mazières, and Christos Kozyrakis. “Shinjuku: Preemptive Scheduling for µsecond-
scale Tail Latency”. In: 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19). 2019, pp. 345–360.

[74] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel Grossman,
Christos Kozyrakis, and Edouard Bugnion. “The IX Operating System: Com-
bining Low Latency, High Throughput, and Efficiency in a Protected Data-
plane”. In: ACM Trans. Comput. Syst. 34.4 (Dec. 2016). issn: 0734-2071. doi:
10.1145/2997641. url: https://doi.org/10.1145/2997641.

[75] Shelby Thomas, Geoffrey M. Voelker, and George Porter. “CacheCloud: To-
wards Speed-of-light Datacenter Communication”. In: 10th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 18). Boston, MA: USENIX Asso-
ciation, July 2018. url: https://www.usenix.org/conference/hotcloud18/
presentation/thomas.

[76] Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker, and George Porter.
“Dark Packets and the End of Network Scaling”. In: Proceedings of the 2018
Symposium on Architectures for Networking and Communications Systems. ANCS
’18. Ithaca, New York: Association for Computing Machinery, 2018, pp. 1–14.

https://www.usenix.org/conference/nsdi22/presentation/mcclure
https://doi.org/10.1145/3379483
https://doi.org/10.1145/3379483
https://www.usenix.org/conference/atc18/presentation/iorgulescu
https://www.usenix.org/conference/atc18/presentation/iorgulescu
https://doi.org/10.1145/2997641
https://doi.org/10.1145/2997641
https://www.usenix.org/conference/hotcloud18/presentation/thomas
https://www.usenix.org/conference/hotcloud18/presentation/thomas

isbn: 9781450359023. doi: 10.1145/3230718.3230727. url: https://doi.
org/10.1145/3230718.3230727.

[77] Intel® Data Direct I/O Technology (Intel® DDIO): A Primer. Intel, Feb. 2012.
url: https://www.intel.com/content/dam/www/public/us/en/documents/
technology-briefs/data-direct-i-o-technology-brief.pdf (visited on
01/25/2022).

[78] Minhu Wang, Mingwei Xu, and Jianping Wu. “Understanding I/O Direct Cache
Access Performance for End Host Networking”. In: Proceedings of the ACM on
Measurement and Analysis of Computing Systems 6.1 (2022), pp. 1–37.

[79] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang, and
Rachit Agarwal. “Understanding host network stack overheads”. In: Proceedings
of the 2021 ACM SIGCOMM 2021 Conference. 2021, pp. 65–77.

[80] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić. “Re-
examining Direct Cache Access to Optimize I/O Intensive Applications for
Multi-hundred-gigabit Networks”. In: 2020 USENIX Annual Technical Confer-
ence (USENIX ATC 20). USENIX Association, July 2020, pp. 673–689. isbn:
978-1-939133-14-4. url: https : / / www . usenix . org / conference / atc20 /
presentation/farshin.

[81] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr, and Dejan Kostić. “Make
the most out of last level cache in intel processors”. In: Proceedings of the Four-
teenth EuroSys Conference 2019. 2019, pp. 1–17.

[82] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Katerina Argy-
raki, Sylvia Ratnasamy, and Scott Shenker. “ResQ: Enabling SLOs in Network
Function Virtualization”. In: 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). 2018, pp. 283–297.

[83] “Packet Order Matters! Improving Application Performance by Deliberately
Delaying Packets”. In: 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22). Renton, WA: USENIX Association, Apr.
2022. url: https://www.usenix.org/conference/nsdi22/presentation/
ghasemirahni.

[84] Data Plane Development Kit Power Optimization on Advantech* Network Ap-
pliance Platform. Tech. rep. Intel, 2015. url: https : / / www . intel . com /

content/dam/www/public/us/en/documents/white-papers/dpdk-power-

optimization-advantech-white-paper.pdf.

[85] Xuesong Li, Wenxue Cheng, Tong Zhang, Jing Xie, Fengyuan Ren, and Bailong
Yang. “Power Efficient High Performance Packet I/O”. In: ACM ICPP 2018.

[86] Sebastiano Miano, Alireza Sanaee, Fulvio Risso, Gábor Rétvári, and Gianni
Antichi. “Domain Specific Run Time Optimization for Software Data Planes”.
In: (2022).

https://doi.org/10.1145/3230718.3230727
https://doi.org/10.1145/3230718.3230727
https://doi.org/10.1145/3230718.3230727
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.usenix.org/conference/atc20/presentation/farshin
https://www.usenix.org/conference/atc20/presentation/farshin
https://www.usenix.org/conference/nsdi22/presentation/ghasemirahni
https://www.usenix.org/conference/nsdi22/presentation/ghasemirahni
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/dpdk-power-optimization-advantech-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/dpdk-power-optimization-advantech-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/dpdk-power-optimization-advantech-white-paper.pdf

[87] Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q Maguire Jr, and Dejan
Kostić. “PacketMill: toward per-Core 100-Gbps networking”. In: Proceedings of
the 26th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 2021, pp. 1–17.

[88] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and AndrewWMoore. “Understanding PCIe performance for end
host networking”. In: Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. 2018, pp. 327–341.

[89] Roni Haecki, Lukas Humbel, Reto Achermann, David Cock, Daniel Schwyn, and
Timothy Roscoe. “CleanQ: a lightweight, uniform, formally specified interface
for intra-machine data transfer”. In: arXiv preprint arXiv:1911.08773 (2019).

[90] Paul E McKenney, Jonathan Appavoo, Andi Kleen, Orran Krieger, Rusty Rus-
sell, Dipankar Sarma, and Maneesh Soni. “Read-copy update”. In: AUUG Con-
ference Proceedings. AUUG, Inc. 2001, p. 175.

[91] The kernel development community. What is RCU? – “Read, Copy, Update”.
url: https://www.kernel.org/doc/html/latest/RCU/whatisRCU.html.

https://www.kernel.org/doc/html/latest/RCU/whatisRCU.html

	Introduction
	Context
	Data Centers
	The need for CPU cycles
	The network perspective

	Problem statement
	Objective
	Scope

	Dissertation outline
	Published Works
	Conferences Attended
	Rewards and Internships

	Background
	NIC-CPU interaction
	Network Drivers

	Network stacks and frameworks
	Queue modeling
	DPDK

	Non-blocking algorithms
	Where this dissertation fits
	Metronome
	Non-blocking, single-queue driver

	I Metronome
	Metronome architecture
	Fine-grained Thread Sleep Service
	Actual Thread Operations
	Skeleton code

	Metronome Adaptive tuning
	Metronome Multi-Threading Strategy
	Metronome Analysis
	Background
	Vacation Period statistics at high load
	Vacation period statistics at low load
	Experimental verification of the decorrelation assumption

	Adaptation policy under general load conditions
	Metronome Adaptation and Tradeoffs
	The multiqueue case

	Experimental results
	Parameters Tuning
	Vacation period ()
	Number of threads (M)
	Long sleep time (TL)

	Tuning for latency
	Adaptation
	Comparing Metronome and DPDK
	Comparing Metronome and XDP
	Impact
	Vacation period interference
	Going multiqueue
	Tuning the number of queues
	Power governors matter
	Tuning the number of threads
	Scaling to the actual traffic
	Unbalanced traffic
	Thread-to-queue binding policy
	Many-queues scaling

	Tested applications

	II Non-blocking, single-queue driver
	Architecture
	Motivation
	Simulation results

	Core Concepts
	Challenges and Constraints
	The Algorithm
	Handling thread-level parallelism
	Handling transparency to the NIC

	Implementation
	Corner cases
	Practical details

	Experimental results
	Scalability tests
	Latency
	Mean Latency
	Tail Latency

	UDP reordering
	TCP

	III Related Work
	Related Work
	Optimized networking software
	Latency
	Cache performances
	Power consumption
	Other optimizations

	Network drivers
	Modern optimizations

	Non-blocking algorithms

	IV Concluding Remarks
	Conclusions
	Acknowledgements
	Bibliography

